Skip to main content

Quasiperiodicity and Non-computability in Tilings

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2015 (MFCS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9234))

Abstract

We study tilings of the plane that combine strong properties of different nature: combinatorial and algorithmic. We prove the existence of a tile set that accepts only quasiperiodic and non-recursive tilings. Our construction is based on the fixed point construction [12]; we improve this general technique and make it enforce the property of local regularity of tilings needed for quasiperiodicity. We prove also a stronger result: any \(\mathrm \Pi _1^0\)-class can be recursively transformed into a tile set so that the Turing degrees of the resulting tilings consists exactly of the upper cone based on the Turing degrees of the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berger, R.: The undecidability of the domino problem. Mem. Am. Math. Soc. 66, 72 (1966)

    Google Scholar 

  2. Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Invent. Math. 12, 177–209 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  3. Grünbaum, B., Shephard, G.C.: Tilings and Patterns. A Series of Books in the Mathematical Sciences. W.H. Freeman and Company, New York (1989)

    MATH  Google Scholar 

  4. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer Science and Business Media, Heidelberg (2001)

    MATH  Google Scholar 

  5. van Emde Boas, P.: Dominoes are Forever. Universiteit van Amsterdam, Mathematisch Instituut, Amsterdam (1983)

    Google Scholar 

  6. Levitov, L.S.: Local rules for quasicrystals. Commun. Math. Phys. 119(4), 627–666 (1988)

    Article  MathSciNet  Google Scholar 

  7. Hanf, W.: Nonrecursive tilings of the plane I. J. Symbol. Logic 39, 283–285 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Myers, D.: Nonrecursive tilings of the plane II. J. Symbol. Logic 39, 286–294 (1974)

    Article  MATH  Google Scholar 

  9. Culik II, K., Kari, J.: An aperiodic set of Wang cubes. J. UCS J. Univers. Comput. Sci. 1(10), 675–686 (1996)

    Article  MathSciNet  Google Scholar 

  10. Ollinger, N.: Two-by-two substitution systems and the undecidability of the domino problem. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 476–485. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Durand, B., Levin, L.A., Shen, A.: Complex tilings. J. Symbol. Logic 73, 593–613 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Durand, B., Romashchenko, A., Shen, A.: Fixed-point tile sets and their applications. J. Comput. Syst. Sci. 78(3), 731–764 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Durand, B.: Tilings and quasiperiodicity. Theor. Comput. Sci. 221(1), 61–75 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ballier, A.: Propriétés structurelles, combinatoires et logiques des pavages. Ph.D. thesis, Marseille, November 2009

    Google Scholar 

  15. Ballier, A., Jeandel, E.: Computing (or not) quasi-periodicity functions of tilings. In Proceedings 2nd Symposium on Cellular Automata (JAC 2010), pp. 54–64 (2010)

    Google Scholar 

  16. Jeandel, E., Vanier, P.: \(\mathit{\Pi }^0_1\) sets and tilings. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 230–239. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Jeandel, E., Vanier, P.: Turing degrees of multidimensional SFTs. Theor. Comput. Sci. 505, 81–92 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hochman, M., Vanier, P.: A note on Turing degree spectra of minimal (2014). arXiv:1408.6487

  19. Hochman, M.: Upcrossing inequalities for stationary sequences and applications to entropy and complexity. Ann. Probab. 37(6), 2135–2149 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Laurent Bienvenu and Emmanuel Jeandel for many prolific discussions. We are also very grateful to the three anonymous referees for exceptionally detailed and instructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Romashchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Durand, B., Romashchenko, A. (2015). Quasiperiodicity and Non-computability in Tilings. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48057-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48057-1_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48056-4

  • Online ISBN: 978-3-662-48057-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics