Skip to main content

A General Model for Studying Time Evolution of Transition Networks

  • Chapter
  • First Online:
Complex Systems and Networks

Part of the book series: Understanding Complex Systems ((UCS))

  • 2963 Accesses

Abstract

We consider a class of complex networks whose nodes assume one of several possible states at any time and may change their states from time to time. Such networks, referred to as transition networks in this chapter, represent practical networks of rumor spreading, disease spreading, language evolution, and so on. Here, we derive a general analytical model describing the dynamics of a transition network and derive a simulation algorithm for studying the network evolutionary behavior. By using this model, we can analytically compute the probability that (1) the next transition will happen at a given time; (2) a particular transition will occur; (3) a particular transition will occur with a specific link. This model, derived at a microscopic level, can reveal the transition dynamics of every node. A numerical simulation is taken as an “experiment” or “realization” of the model. We use this model to study the disease propagation dynamics in four different prototypical networks, namely, the regular nearest-neighbor (RN) network, the classical Erdös-Renyí (ER) random graph, the Watts-Strogátz small-world (SW) network, and the Barabási-Albert (BA) scalefree network. We find that the disease propagation dynamics in these four networks generally have different properties but they do share some common features. Furthermore, we utilize the transition network model to predict user growth in the Facebook network. Simulation shows that our model agrees with the historical data. The study can provide a useful tool for a more thorough understanding of the dynamics of transition networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)

    Article  Google Scholar 

  2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    Article  MATH  Google Scholar 

  3. Daley, D.J., Kendall, D.G.: Epidemics and rumours. Nature 204(4963), 1118 (1964)

    Article  Google Scholar 

  4. Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E 66(1), 016128 (2002)

    Article  MathSciNet  Google Scholar 

  5. May, R.M., Lloyd, A.L.: Infection dynamics on scale-free networks. Phys. Rev. E 64(6), 066112 (2001)

    Article  Google Scholar 

  6. Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B-Condens. Matter Complex Syst. 26(4), 521–529 (2002)

    Google Scholar 

  7. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200 (2001)

    Article  Google Scholar 

  8. Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 63(6), 066117 (2001)

    Article  Google Scholar 

  9. Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys. Rev. Lett. 92(17), 178701 (2004)

    Article  Google Scholar 

  10. Zhou, T., Yan, G., Wang, B.H.: Maximal planar networks with large clustering coefficient and power-law degree distribution. Phys. Rev. E 71(4), 046141 (2005)

    Article  Google Scholar 

  11. Vazquez, A.: Polynomial growth in branching processes with diverging reproductive number. Phys. Rev. Lett. 96(3), 038702 (2006)

    Article  Google Scholar 

  12. Wang, W.S.Y., Minett, J.W.: The invasion of language: emergence, change and death. Trends Ecol. Evol. 20(5), 263–269 (2005)

    Article  Google Scholar 

  13. Ke, J., Gong, T., Wang, W.S.Y.: Language change and social networks. Comput. Phys. Commun. 3(4), 935–949 (2008)

    MATH  Google Scholar 

  14. Ribeiro, B.: Modeling and predicting the growth and death of membership-based websites. In: Proceedings of 23rd International Conference World Wide Web, International World Wide Web Conferences Steering Committee, pp. 653–664 (2014)

    Google Scholar 

  15. Mann, R.P., Faria, J., Sumpter, D.J.T., Krause, J.: The dynamics of audience applause. J. R. Soc. Interface 10(85), 20130466 (2013)

    Article  Google Scholar 

  16. Centola, D.: The spread of behavior in an online social network experiment. Science 329(5996), 1194–1197 (2010)

    Article  Google Scholar 

  17. Anderson, R.M., May, R.M., Anderson, B.: Infectious Diseases of Humans: Dynamics and Control, vol. 28, Wiley Online Library (1992)

    Google Scholar 

  18. Murray, J.D.: Mathematical Biology, vol. 3. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  19. Small, M., Tse, C.K.: Small world and scale free model of transmission of SARS. Int. J. Bifurc. Chaos 15(05), 1745–1755 (2005)

    Article  Google Scholar 

  20. Small, M., Tse, C.K., Walker, D.M.: Super-spreaders and the rate of transmission of the SARS virus. Phys. D Nonlinear Phenom. 215(2), 146–158 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  22. Zanette, D.H.: Dynamics of rumor propagation on small-world networks. Phys. Rev. E 65(4), 041908 (2002)

    Article  MathSciNet  Google Scholar 

  23. Moreno, Y., Nekovee, M., Pacheco, A.F.: Dynamics of rumor spreading in complex networks. Phys. Rev. E 69(6), 066130 (2004)

    Article  Google Scholar 

  24. Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical Processes in Complex Networks, vol. 1. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  25. Øksendal, B.: Stochastic Differential Equations. Springer, Berlin (2003)

    Book  Google Scholar 

  26. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  27. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  28. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)

    MATH  Google Scholar 

  29. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  30. Newman, M.E.J., Watts, D.J.: Renormalization group analysis of the small-world network model. Phys. Lett. A 263(4), 341–346 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  32. Bollobás, B., Riordan, O.: Mathematical results on scale-free random graphs. Handb. Graphs Netw. 1, 34 (2003)

    Google Scholar 

  33. Cohen, R., Havlin, S.: Scale-free networks are ultrasmall. Phys. Rev. Lett. 90(5), 058701 (2003)

    Article  Google Scholar 

  34. YahooNews: Number of active users at Facebook over the years (2013)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Hong Kong Polytechnic University Central Research Grant G-YBAT. This work was developed partly during the visit of the second author to the University of Western Australia under the support of the Gledden Visiting Fellowship in 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi K. Tse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhan, C., Tse, C.K., Small, M. (2016). A General Model for Studying Time Evolution of Transition Networks. In: Lü, J., Yu, X., Chen, G., Yu, W. (eds) Complex Systems and Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47824-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47824-0_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47823-3

  • Online ISBN: 978-3-662-47824-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics