Skip to main content

The Extracellular Matrix Protein 1 (ECM1) in Molecular-Based Skin Biology

  • Reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

Extracellular matrix protein 1 (ECM1) is an 85-kDa secreted glycoprotein that plays a pivotal role in the structural and homeostatic biology of the skin, particularly in the proliferation and differentiation of epidermal keratinocytes, reconstitution of basement membrane, angiogenesis, malignant transformation, and aging. The multifocal interaction of ECM1 with various extracellular matrix and structural molecules is substantiated by loss-of-function mutations in the ECM1 gene in an autosomal recessive genodermatosis lipoid proteinosis and circulating IgG autoantibodies to this molecule in a humoral autoimmune condition lichen sclerosus, both of which are now recognized as an immunogenetic disease counterpart sharing comparable skin pathology. A series of underlying insights for the in vivo ECM1 biology, as a binding core and/or a scaffolding protein, arose not only for wide-ranged differentiation properties of the epidermal keratinocytes, acquisition of immune tolerance and allergic responses via particular T cell subsets such as CD4+ CD25+ regulatory T cells and Th2 cells, and various cancers but also from intrinsic and extrinsic aging of the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mathieu E, Meheus L, Raymackers J, et al. Characterization of the osteogenic stromal cell line MN7: identification of secreted MN7 proteins using two-dimensional polyacrylamide gel electrophoresis, western blotting, and microsequencing. J Bone Miner Res. 1994;9:903–13.

    Article  CAS  PubMed  Google Scholar 

  2. Bhalerao J, Tylzanowski P, Filie JD, et al. Molecular cloning, characterization, and genetic mapping of the cDNA coding for a novel secretory protein of mouse. Demonstration of alternative splicing in skin and cartilage. J Biol Chem. 1995;270:16385–94.

    Article  CAS  PubMed  Google Scholar 

  3. Smits P, Bhalerao J, Merregaert J. Molecular cloning and characterization of the mouse Ecm1 gene and its 5′ regulatory sequences. Gene. 1999;226:253–61.

    Article  CAS  PubMed  Google Scholar 

  4. Smits P, Ni J, Feng P, et al. The human extracellular matrix gene 1 (ECM1): genomic structure, cDNA cloning, expression pattern, and chromosomal localization. Genomics. 1997;45:487–95.

    Article  CAS  PubMed  Google Scholar 

  5. Johnson MR, Wilkin DJ, Vos HL, et al. Characterization of the human extracellular matrix protein 1 gene on chromosome 1q21. Matrix Biol. 1997;16:289–92.

    Article  CAS  PubMed  Google Scholar 

  6. Oyama N, Chan I, Neill SM, et al. Autoantibodies to extracellular matrix protein 1 in lichen sclerosus. Lancet. 2003;362:118–23.

    Article  CAS  PubMed  Google Scholar 

  7. Sander CS, Sercu S, Ziemer M, et al. Expression of extracellular matrix protein 1 (ECM1) in human skin is decreased by age and increased upon ultraviolet exposure. Br J Dermatol. 2006;154:218–24.

    Article  CAS  PubMed  Google Scholar 

  8. Mongiat M, Fu J, Oldershaw R, et al. Perlecan protein core interacts with extracellular matrix protein 1 (ECM1), a glycoprotein involved in bone formation and angiogenesis. J Biol Chem. 2003;278:17491–9.

    Article  CAS  PubMed  Google Scholar 

  9. Smits P, Poumay Y, Karperien M, et al. Differentiation-dependent alternative splicing and expression of the extracellular matrix protein 1 gene in human keratinocytes. J Invest Dermatol. 2000;114:718–24.

    Article  CAS  PubMed  Google Scholar 

  10. Horev L, Potikha T, Ayalon S, et al. A novel splice-site mutation in ECM-1 gene in a consanguineous family with lipoid proteinosis. Exp Dermatol. 2005;14:891–7.

    Article  CAS  PubMed  Google Scholar 

  11. Sercu S, Lambeir AM, Steenackers E, et al. ECM1 interacts with fibulin-3 and the beta 3 chain of laminin 332 through its serum albumin subdomain-like 2 domain. Matrix Biol. 2009;28:160–9.

    Article  CAS  PubMed  Google Scholar 

  12. Kragh-Hansen U. Structure and ligand binding properties of human serum albumin. Dan Med Bull. 1990;37:57–84.

    CAS  PubMed  Google Scholar 

  13. Hamada T, McLean WH, Ramsay M, et al. Lipoid proteinosis maps to 1q21 and is caused by mutations in the extracellular matrix protein 1 gene (ECM1). Hum Mol Genet. 2002;11:833–40.

    Article  CAS  PubMed  Google Scholar 

  14. Urbach EWC. Lipoidosis cutis et mucosae. Virchows Arch Pathol Anat. 1929;273:285–319.

    Article  Google Scholar 

  15. Chan I, Liu L, Hamada T, et al. The molecular basis of lipoid proteinosis: mutations in extracellular matrix protein 1. Exp Dermatol. 2007;16:881–90.

    Article  CAS  PubMed  Google Scholar 

  16. Chan I. The role of extracellular matrix protein 1 in human skin. Clin Exp Dermatol. 2004;29:52–6.

    Article  CAS  PubMed  Google Scholar 

  17. Uematsu S, Goto Y, Suzuki T, et al. N-Glycosylation of extracellular matrix protein 1 (ECM1) regulates its secretion, which is unrelated to lipoid proteinosis. FEBS Open Bio. 2014;4:879–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ettner N, Göhring W, Sasaki T, et al. The N-terminal globular domain of the laminin alpha1 chain binds to alpha1beta1 and alpha2beta1 integrins and to the heparan sulfate-containing domains of perlecan. FEBS Lett. 1998;430:217–21.

    Article  CAS  PubMed  Google Scholar 

  19. Hopf M, Göhring W, Kohfeldt E, et al. Recombinant domain IV of perlecan binds to nidogens, laminin-nidogen complex, fibronectin, fibulin-2 and heparin. Eur J Biochem. 1999;259:917–25.

    Article  CAS  PubMed  Google Scholar 

  20. Fujimoto N, Terlizzi J, Aho S, et al. Extracellular matrix protein 1 inhibits the activity of matrix metalloproteinase 9 through high-affinity protein/protein interactions. Exp Dermatol. 2006;15:300–7.

    Article  CAS  PubMed  Google Scholar 

  21. Meletti S, Cantalupo G, Santoro F, et al. Temporal lobe epilepsy and emotion recognition without amygdala: a case study of Urbach-Wiethe disease and review of the literature. Epileptic Disord. 2014;16:518–27.

    PubMed  Google Scholar 

  22. Fujimoto N, Terlizzi J, Brittingham R, et al. Extracellular matrix protein 1 interacts with the domain III of fibulin-1C and 1D variants through its central tandem repeat 2. Biochem Biophys Res Commun. 2005;333:1327–33.

    Article  CAS  PubMed  Google Scholar 

  23. Albig AR, Neil JR, Schiemann WP. Fibulins 3 and 5 antagonize tumor angiogenesis in vivo. Cancer Res. 2006;66:2621–9.

    Article  CAS  PubMed  Google Scholar 

  24. Sercu S, Zhang M, Oyama N, et al. Interaction of extracellular matrix protein 1 with extracellular matrix components: ECM1 is a basement membrane protein of the skin. J Invest Dermatol. 2008;128:1397–409. Corrigendum J Invest Dermatol. 2009;129:1836–7.

    Article  CAS  PubMed  Google Scholar 

  25. Sercu S, Zhang L, Merregaert J. The extracellular matrix protein 1: its molecular interaction and implication in tumor progression. Cancer Invest. 2008;26:375–84.

    Article  CAS  PubMed  Google Scholar 

  26. Pulkkinen L, Uitto J. Mutation analysis and molecular genetics of epidermolysis bullosa. Matrix Biol. 1999;18:29–42.

    Article  CAS  PubMed  Google Scholar 

  27. Bekou V, Thoma-Uszynski S, Wendler O, et al. Detection of laminin 5-specific auto-antibodies in mucous membrane and bullous pemphigoid sera by ELISA. J Invest Dermatol. 2005;124:732–40.

    Article  CAS  PubMed  Google Scholar 

  28. McMillan JR, Akiyama M, Shimizu H. Epidermal basement membrane zone components: ultrastructural distribution and molecular interactions. J Dermatol Sci. 2003;31:169–77.

    Article  CAS  PubMed  Google Scholar 

  29. McKee KK, Harrison D, Capizzi S, Yurchenco PD. Role of laminin terminal globular domains in basement membrane assembly. J Biol Chem. 2007;282:21437–47.

    Article  CAS  PubMed  Google Scholar 

  30. Di Cesare PE, Fang C, Leslie MP, et al. Expression of cartilage oligomeric matrix protein (COMP) by embryonic and adult osteoblasts. J Orthop Res. 2000;18:713–20.

    Article  PubMed  Google Scholar 

  31. Hedbom E, Antonsson P, Hjerpe A, et al. Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage. J Biol Chem. 1992;267:6132–6.

    CAS  PubMed  Google Scholar 

  32. Briggs MD, Hoffman SM, King LM, et al. Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nature. 1995;10:330–6.

    CAS  Google Scholar 

  33. Kong L, Tian Q, Guo F, et al. Interaction between cartilage oligomeric matrix protein and extracellular matrix protein 1 mediates endochondral bone growth. Matrix Biol. 2010;29:276–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sahu SK, Gummadi SN, Manoj N, Aradhyam GK. Phospholipid scramblases: an overview. Arch Biochem Biophys. 2007;462:103–14.

    Article  CAS  PubMed  Google Scholar 

  35. Göhring W, Sasaki T, Heldin CH, Timpl R. Mapping of the binding of platelet-derived growth factor to distinct domains of the basement membrane proteins BM-40 and perlecan and distinction from the BM-40 collagen-binding epitope. Eur J Biochem. 1998;255:60–6.

    Article  PubMed  Google Scholar 

  36. Mongiat M, Taylor K, Otto J, et al. The protein core of the proteoglycan perlecan binds specifically to fibroblast growth factor-7. J Biol Chem. 2000;275:7095–100.

    Article  CAS  PubMed  Google Scholar 

  37. Jiang X, Couchman JR. Perlecan and tumor angiogenesis. J Histochem Cytochem. 2003;51:1393–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Raymond MA, Désormeaux A, Laplante P, et al. Apoptosis of endothelial cells triggers a caspase-dependent anti-apoptotic paracrine loop active on VSMC. FASEB J. 2004;18:705–7.

    CAS  PubMed  Google Scholar 

  39. Merregaert J, Van Langen J, Hansen U, et al. Phospholipid scramblase 1 is secreted by a lipid raft-dependent pathway and interacts with the extracellular matrix protein 1 in the dermal epidermal junction zone of human skin. J Biol Chem. 2010;285:37823–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Feng JQ, Guo FJ, Jiang BC, et al. Granulin epithelin precursor: a bone morphogenic protein 2-inducible growth factor that activates Erk1/2 signaling and JunB transcription factor in chondrogenesis. FASEB J. 2010;24:1879–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu K, Zhang Y, Ilalov K, et al. Cartilage oligomeric matrix protein associates with granulin-epithelin precursor (GEP) and potentiates GEP-stimulated chondrocyte proliferation. J Biol Chem. 2007;282:11347–55.

    Article  CAS  PubMed  Google Scholar 

  42. Deckers M, Smits P, Karperien M, et al. Recombinant human extracellular matrix protein 1 inhibits alkaline phosphatase activity and mineralization of mouse embryonic metatarsals in vitro. Bone. 2001;28:14–20.

    Article  CAS  PubMed  Google Scholar 

  43. Hoogendam J, Farih-Sips H, van Beek E, et al. Novel late response genes of PTHrP in chondrocytes. Horm Res. 2007;67:159–70.

    Article  CAS  PubMed  Google Scholar 

  44. Mirancea N, Hausser I, Beck R, et al. Vascular anomalies in lipoid proteinosis (hyalinosis cutis et mucosae): basement membrane components and ultrastructure. J Dermatol Sci. 2006;42:231–9.

    Article  CAS  PubMed  Google Scholar 

  45. Mirancea N, Hausser I, Metze D, et al. Junctional basement membrane anomalies of skin and mucosa in lipoid proteinosis (hyalinosis cutis et mucosae). J Dermatol Sci. 2007;45:175–85.

    Article  CAS  PubMed  Google Scholar 

  46. Sercu S, Poumay Y, Herphelin F, et al. Functional redundancy of extracellular matrix protein 1 in epidermal differentiation. Br J Dermatol. 2007;157:771–5.

    Article  CAS  PubMed  Google Scholar 

  47. Han Z, Ni J, Smits P, et al. Extracellular matrix protein 1 (ECM1) has angiogenic properties and is expressed by breast tumor cells. FASEB J. 2001;15:988–94.

    Article  CAS  PubMed  Google Scholar 

  48. Kowalewski C, Kozłowska A, Górska M, et al. Alterations of basement membrane zone and cutaneous microvasculature in morphea and extragenital lichen sclerosus. Am J Dermatopathol. 2005;27:489–96.

    Article  PubMed  Google Scholar 

  49. Liu Z, Kim JH, Falo Jr LD, You Z. Tumor regulatory T cells potently abrogate antitumor immunity. J Immunol. 2009;182:6160–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sugimoto N, Oida T, Hirota K, et al. Foxp3-dependent and -independent molecules specific for CD25 + CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int Immunol. 2006;18:1197–209.

    Article  CAS  PubMed  Google Scholar 

  51. Li Z, Zhang Y, Liu Z, et al. ECM1 controls T(H)2 cell egress from lymph nodes through re-expression of S1P(1). Nat Immunol. 2011;12:178–85.

    Article  CAS  PubMed  Google Scholar 

  52. Vocanson M, Hennino A, Cluzel-Tailhardat M, et al. CD8+ T cells are effector cells of contact dermatitis to common skin allergens in mice. J Invest Dermatol. 2006;126:815–20.

    Article  CAS  PubMed  Google Scholar 

  53. Shapira E, Brodsky B, Proscura E, et al. Amelioration of experimental autoimmune encephalitis by novel peptides: involvement of T regulatory cells. J Autoimmun. 2010;35:98–106.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Y, Bandala-Sanchez E, Harrison LC. Revisiting regulatory T cells in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes. 2012;19:271–8.

    Article  CAS  PubMed  Google Scholar 

  55. Marazuela M, García-López MA, Figueroa-Vega N, et al. Regulatory T cells in human autoimmune thyroid disease. J Clin Endocrinol Metab. 2006;91:3639–46.

    Article  CAS  PubMed  Google Scholar 

  56. Maul J, Loddenkemper C, Mundt P, et al. Peripheral and intestinal regulatory CD4+ CD25 (high) T cells in inflammatory bowel disease. Gastroenterology. 2005;128:1868–78.

    Article  CAS  PubMed  Google Scholar 

  57. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4 + CD25+ regulatory T cells. Nat Immunol. 2003;4:330–6.

    Article  CAS  PubMed  Google Scholar 

  58. Xiong GP, Zhang JX, Gu SP, et al. Overexpression of ECM1 contributes to migration and invasion in cholangiocarcinoma cell. Neoplasma. 2012;59:409–15.

    Article  CAS  PubMed  Google Scholar 

  59. Chen H, Jia WD, Li JS, et al. Extracellular matrix protein 1, a novel prognostic factor, is associated with metastatic potential of hepatocellular carcinoma. Med Oncol. 2011;28 Suppl 1:S318–25.

    Article  PubMed  CAS  Google Scholar 

  60. Yang S, Dong Q, Yao M, et al. Establishment of an experimental human lung adenocarcinoma cell line SPC-A-1BM with high bone metastases potency by (99m)Tc-MDP bone scintigraphy. Nucl Med Biol. 2009;36:313–21.

    Article  CAS  PubMed  Google Scholar 

  61. López-Marure R, Contreras PG, Dillon JS. Effects of dehydroepiandrosterone on proliferation, migration, and death of breast cancer cells. Eur J Pharmacol. 2011;660:268–74.

    Article  PubMed  CAS  Google Scholar 

  62. Kenny PA, Enver T, Ashworth A. Receptor and secreted targets of Wnt-1/beta-catenin signalling in mouse mammary epithelial cells. BMC Cancer. 2005;5:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Breloy I, Pacharra S, Ottis P, et al. O-linked N,N′-diacetyllactosamine (LacdiNAc)-modified glycans in extracellular matrix glycoproteins are specifically phosphorylated at subterminal N-acetylglucosamine. J Biol Chem. 2012;287:18275–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Funahashi H, Okada Y, Sawai H, et al. The role of glial cell line-derived neurotrophic factor (GDNF) and integrins for invasion and metastasis in human pancreatic cancer cells. J Surg Oncol. 2005;91:77–83.

    Article  CAS  PubMed  Google Scholar 

  65. Wang L, Yu J, Ni J, et al. Extracellular matrix protein 1 (ECM1) is over-expressed in malignant epithelial tumors. Cancer Lett. 2003;200:57–67.

    Article  CAS  PubMed  Google Scholar 

  66. Lal G, Hashimi S, Smith BJ, et al. Extracellular matrix 1 (ECM1) expression is a novel prognostic marker for poor long-term survival in breast cancer: a Hospital-based Cohort Study in Iowa. Ann Surg Oncol. 2009;16:2280–7.

    Article  PubMed  Google Scholar 

  67. Wu QW, She HQ, Liang J, et al. Expression and clinical significance of extracellular matrix protein 1 and vascular endothelial growth factor-C in lymphatic metastasis of human breast cancer. BMC Cancer. 2012;12:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee KM, Nam K, Oh S, et al. Extracellular matrix protein 1 regulates cell proliferation and trastuzumab resistance through activation of epidermal growth factor signaling. Breast Cancer Res. 2014;16:479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Lee KM, Nam K, Oh S, et al. ECM1 regulates tumor metastasis and CSC-like property through stabilization of β-catenin. Oncogene. 2015. doi:10.1038/onc.2015.54.

    Google Scholar 

  70. Huang L, Chen D, Liu D, et al. MUC1 oncoprotein blocks glycogen synthase kinase 3beta-mediated phosphorylation and degradation of beta-catenin. Cancer Res. 2005;65:10413–22.

    Article  CAS  PubMed  Google Scholar 

  71. Gu M, Guan J, Zhao L, et al. Correlation of ECM1 expression level with the pathogenesis and metastasis of laryngeal carcinoma. Int J Clin Exp Pathol. 2013;6:1132–7.

    PubMed  PubMed Central  Google Scholar 

  72. Meng XY, Liu J, Lv F, et al. Study on the correlation between extracellular matrix protein-1 and the growth, metastasis and angiogenesis of laryngeal carcinoma. Asian Pac J Cancer Prev. 2015;16:2313–6.

    Article  PubMed  Google Scholar 

  73. Lee KM, Nam K, Oh S, et al. ECM1 promotes the Warburg effect through EGF-mediated activation of PKM2. Cell Signal. 2015;27:228–35.

    Article  CAS  PubMed  Google Scholar 

  74. Gao F, Xia Y, Wang J, et al. Integrated analyses of DNA methylation and hydroxymethylation reveal tumor suppressive roles of ECM1, ATF5, and EOMES in human hepatocellular carcinoma. Genome Biol. 2014;15:533–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Fisher SA, Tremelling M, Anderson CA, et al. Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat Genet. 2008;40:710–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wlaschek M, Tantcheva-Poor I, Naderi L, et al. Solar UV irradiation and dermal photoaging. J Photochem Photobiol. 2001;63:41–51.

    Article  CAS  Google Scholar 

  77. Varani J, Warner RL, Gharaee-Kermani M, et al. Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. J Invest Dermatol. 2000;114:480–6.

    Article  CAS  PubMed  Google Scholar 

  78. Lock-Andersen J, Therkildsen P, de Fine OF, et al. Epidermal thickness, skin pigmentation and constitutive photosensitivity. Photodermatol Photoimmunol Photomed. 1997;13:153–8.

    Article  CAS  PubMed  Google Scholar 

  79. Chung JH, Seo JY, Choi HR, et al. Modulation of skin collagen metabolism in aged and photoaged human skin in vivo. J Invest Dermatol. 2001;117:1218–24.

    Article  CAS  PubMed  Google Scholar 

  80. Kligman LH, Kligman AM. The nature of photoaging: its prevention and repair. Photodermatology. 1986;3:215–27.

    CAS  PubMed  Google Scholar 

  81. de Rigal J, Escoffier C, Querleux B, et al. Assessment of aging of the human skin by in vivo ultrasonic imaging. J Invest Dermatol. 1989;93:621–5.

    Article  PubMed  Google Scholar 

  82. Bernstein EF, Chen YQ, Kopp JB, et al. Long-term sun exposure alters the collagen of the papillary dermis. Comparison of sunprotected and photoaged skin by northern analysis, immunohistochemical staining, and confocal laser scanning microscopy. J Am Acad Dermatol. 1996;34:209–18.

    Article  CAS  PubMed  Google Scholar 

  83. Chan I, El-Zurghany A, Zendah B, Benghazil M, et al. Molecular basis of lipoid proteinosis in a Libyan family. Clin Exp Dermatol. 2003;28:545–8.

    Article  CAS  PubMed  Google Scholar 

  84. Van Hougenhouck-Tulleken W, Chan I, Hamada T, et al. Clinical and molecular characterization of lipoid proteinosis in Namaqualand, South Africa. Br J Dermatol. 2004;151:413–23.

    Article  PubMed  CAS  Google Scholar 

  85. Powell JJ, Wojnarowska F. Lichen sclerosus. Lancet. 1999;353:1777–83.

    Article  CAS  PubMed  Google Scholar 

  86. Godoy CA, Teodoro WR, Velosa AP, et al. Unusual remodeling of the hyalinization band in vulval lichen sclerosus by type V collagen and ECM 1 protein. Clinics (Sao Paulo). 2015;70:356–62.

    Article  Google Scholar 

  87. Meffert JJ, Davis BM, Grimwood RE. Lichen sclerosus. J Am Acad Dermatol. 1995;32:393–416.

    Article  CAS  PubMed  Google Scholar 

  88. Kyriakis KP, Emmanuelides S, Terzoudi S, et al. Gender and age prevalence distributions of morphea en plaque and anogenital lichen sclerosus. J Eur Acad Dermatol Venereol. 2007;21:825–6.

    Article  CAS  PubMed  Google Scholar 

  89. Neill SM, Lewis FM, Tatnall FM, Cox NH, British Association of Dermatologists. British Association of Dermatologists’ guidelines for the management of lichen sclerosus 2010. Br J Dermatol. 2010;163:672–82.

    Article  CAS  PubMed  Google Scholar 

  90. Oyama N, Chan I, Neill SM, et al. Development of antigen-specific ELISA for circulating autoantibodies to extracellular matrix protein 1 in lichen sclerosus. J Clin Invest. 2004;113:1550–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kowalewski C, Kozłowska A, Chan I, et al. Three-dimensional imaging reveals major changes in skin microvasculature in lipoid proteinosis and lichen sclerosus. J Dermatol Sci. 2005;38:215–24.

    Article  PubMed  Google Scholar 

  92. Yu CE, Oshima J, Fu YH, et al. Positional cloning of the Werner’s syndrome gene. Science. 1996;12:258–62.

    Article  Google Scholar 

  93. Kitao S, Shimamoto A, Goto M, et al. Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nat Genet. 1999;22:82–4.

    Article  CAS  PubMed  Google Scholar 

  94. Barker DF, Hostikka SL, Zhou J, et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science. 1990;248:1224–7.

    Article  CAS  PubMed  Google Scholar 

  95. Lener T, Moll PR, Rinnerthaler M, et al. Expression profiling of aging in the human skin. Exp Gerontol. 2006;4:387–97.

    Article  CAS  Google Scholar 

  96. Oyama N, Merregaert J. The extracellular matrix protein 1 (ECM1) in skin biology: an update for the pleiotropic action. Open Dermatol J. 2013;7:29–41.

    Article  CAS  Google Scholar 

  97. Chelvan HT, Narasimhan M, Shankaran Subramanian A, et al. Lipoid proteinosis presenting with an unusual nonsense Q32X mutation in exon 2 of the extracellular matrix protein 1 gene. Australas J Dermatol. 2012;53:e79–82.

    Article  PubMed  Google Scholar 

  98. Gao D, Lian P, Wang R, et al. Identification of a novel splicing mutation of ECM1 in a rare lipoid proteinosis family. J Dermatol. 2013;40:675–7.

    Article  PubMed  Google Scholar 

  99. Abbas O, Farooq M, El Khoury J, et al. A novel splice-site ECM1 gene mutation in a Lebanese girl with lipoid proteinosis. Int J Dermatol. 2013;52:824–6.

    Article  PubMed  Google Scholar 

  100. Almeida TF, Soares DC, Quaio CR, et al. Lipoid proteinosis: rare case confirmed by ECM1 mutation detection. Int J Pediatr Otorhinolaryngol. 2014;78:2314–5.

    Article  PubMed  Google Scholar 

  101. Zhang R, Liu Y, Xue Y, et al. Treatment of lipoid proteinosis due to the p.C220G mutation in ECM1, a major allele in Chinese patients. J Transl Med. 2014;12:85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Mondejar R, Garcia-Moreno JM, Rubio R, et al. Clinical and molecular study of the extracellular matrix protein 1 gene in a Spanish family with lipoid proteinosis. J Clin Neurol. 2014;10:64–8.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Nasir M, Rahman SB, Sieber CM, et al. Identification of recurrent c.742G > T nonsense mutation in ECM1 in Pakistani families suffering from lipoid proteinosis. Mol Biol Rep. 2014;41:2085–92.

    Article  CAS  PubMed  Google Scholar 

  104. Youssefian L, Vahidnezhad H, Daneshpazhooh M, et al. Lipoid proteinosis: phenotypic heterogeneity in Iranian families with c.507delT mutation in ECM1. Exp Dermatol. 2015;24:220–2.

    Article  CAS  PubMed  Google Scholar 

  105. Lee MY, Wang HJ, Han Y, et al. Lipoid proteinosis resulting from a large homozygous deletion affecting part of the ECM1 gene and adjacent long non-coding RNA. Acta Derm Venereol. 2015;95:608–10.

    Article  PubMed  Google Scholar 

  106. Hamada T, Wessagowit V, South AP, Ashton GH, Chan I, Oyama N, et al. Extracellular matrix protein 1 gene (ECM1) mutations in lipoid proteinosis and genotype-phenotype correlation. J Invest Dermatol. 2003;120(3):347.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noritaka Oyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Oyama, N., Merregaert, J. (2017). The Extracellular Matrix Protein 1 (ECM1) in Molecular-Based Skin Biology. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47398-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47398-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47397-9

  • Online ISBN: 978-3-662-47398-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics