Skip to main content

Cluster of Differentiation 1d (CD1d) and Skin Aging

  • Reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

CD1d is a member of CD1 family of transmembrane glycoproteins which represent a third lineage of antigen-presenting molecules. CD1 molecules have evolved to bind lipids and glycolipids. The gene for CD1d is located on chromosome 1 in humans. This chapter will go into detail about the different CDI family function, expression and regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Porcelli SA. The CD1 family: a third lineage of antigen-presenting molecules. Adv Immunol. 1995;59:1–98.

    Article  CAS  PubMed  Google Scholar 

  2. Porcelli SA, Segelke BW, Sugita M, Wilson IA, Brenner MB. The CD1 family of lipid antigen-presenting molecules. Immunol Today. 1998;19(8):362–8.

    Article  CAS  PubMed  Google Scholar 

  3. Porcelli SA, Modlin RL. The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev Immunol. 1999;17:297–329.

    Article  CAS  PubMed  Google Scholar 

  4. Zeng Z, Castano AR, Segelke BW, Stura EA, Peterson PA, Wilson IA. Crystal structure of mouse CD1: an MHC-like fold with a large hydrophobic binding groove. Science. 1997;277(5324):339–45.

    Article  CAS  PubMed  Google Scholar 

  5. Hong S, Scherer DC, Singh N, Mendiratta SK, Serizawa I, Koezuka Y, Van Kaer L. Lipid antigen presentation in the immune system: lessons learned from CD1d knockout mice. Immunol Rev. 1999;169:31–44.

    Article  CAS  PubMed  Google Scholar 

  6. Exley M, Garcia J, Balk SP, Porcelli S. Requirements for CD1d recognition by human invariant Valpha24 + CD4-CD8- T cells. J Exp Med. 1997;186(1):109–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sidobre S, Kronenberg M. CD1 tetramers: a powerful tool for the analysis of glycolipid-reactive T cells. J Immunol Methods. 2002;268(1):107–21.

    Article  CAS  PubMed  Google Scholar 

  8. Calabi F, Jarvis JM, Martin L, Milstein C. Two classes of CD1 genes. Eur J Immunol. 1989;19(2):285–92.

    Article  CAS  PubMed  Google Scholar 

  9. Kashiwase K, Kikuchi A, Ando Y, Nicol A, Porcelli SA, Tokunaga K, Omine M, Satake M, Juji T, Nieda M, Koezuka Y. The CD1d natural killer T-cell antigen presentation pathway is highly conserved between humans and rhesus macaques. Immunogenetics. 2003;54(11):776–81.

    CAS  PubMed  Google Scholar 

  10. McMichael AJ. Lymphocytes. 1. Function. Genetic restrictions in the immune response. J Clin Pathol Suppl (R Coll Pathol). 1979;13:30–8.

    Article  CAS  Google Scholar 

  11. Brossay L, Chioda M, Burdin N, Koezuka Y, Casorati G, Dellabona P, Kronenberg M. CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med. 1998;188(8):1521–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dellabona P, Padovan E, Casorati G, Brockhaus M, Lanzavecchia A. An invariant V alpha 24-J alpha Q/V beta 11 T cell receptor is expressed in all individuals by clonally expanded CD4-8- T cells. J Exp Med. 1994;180(3):1171–6.

    Article  CAS  PubMed  Google Scholar 

  13. Fujii S, Shimizu K, Steinman RM, Dhodapkar MV. Detection and activation of human Valpha24 + natural killer T cells using alpha-galactosyl ceramide-pulsed dendritic cells. J Immunol Methods. 2003;272(1-2):147–59.

    Article  CAS  PubMed  Google Scholar 

  14. Spada FM, Koezuka Y, Porcelli SA. CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J Exp Med. 1998;188(8):1529–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M. CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science. 1997;278(5343):1626–9.

    Article  CAS  PubMed  Google Scholar 

  16. Nieda M, Nicol A, Koezuka Y, Kikuchi A, Takahashi T, Nakamura H, Furukawa H, Yabe T, Ishikawa Y, Tadokoro K, Juji T. Activation of human Valpha24NKT cells by alpha-glycosylceramide in a CD1d-restricted and Valpha24TCR-mediated manner. Hum Immunol. 1999;60(1):10–9.

    Article  CAS  PubMed  Google Scholar 

  17. Matsumura Y, Moodycliffe AM, Nghiem DX, Ullrich SE, Ananthaswamy HN. Resistance of CD1d−/− mice to ultraviolet-induced skin cancer is associated with increased apoptosis. Am J Pathol. 2004;165(3):879–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Matsumura Y, Moodycliffe AM, Nghiem DX, Ullrich SE, Ananthaswamy HN. Inverse relationship between increased apoptosis and decreased skin cancer in UV-irradiated CD1d−/− mice. Photochem Photobiol. 2005;81(1):46–51.

    Article  CAS  PubMed  Google Scholar 

  19. Nickoloff BJ, Wrone-Smith T, Bonish B, Porcelli SA. Response of murine and normal human skin to injection of allogeneic blood-derived psoriatic immunocytes: detection of T cells expressing receptors typically present on natural killer cells, including CD94, CD158, and CD161. Arch Dermatol. 1999;135(5):546–52.

    Article  CAS  PubMed  Google Scholar 

  20. Nickoloff BJ, Wrone-Smith T. Injection of pre-psoriatic skin with CD4 + T cells induces psoriasis. Am J Pathol. 1999;155(1):145–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nickoloff BJ, Bonish B, Huang BB, Porcelli SA. Characterization of a T cell line bearing natural killer receptors and capable of creating psoriasis in a SCID mouse model system. J Dermatol Sci. 2000;24(3):212–25.

    Article  CAS  PubMed  Google Scholar 

  22. Bonish B, Jullien D, Dutronc Y, Huang BB, Modlin R, Spada FM, Porcelli SA, Nickoloff BJ. Overexpression of CD1d by keratinocytes in psoriasis and CD1d-dependent IFN-gamma production by NK-T cells. J Immunol. 2000;165(7):4076–85.

    Article  CAS  PubMed  Google Scholar 

  23. Adly MA, Assaf HA, Hussein M. Expression of CD1d in human scalp skin and hair follicles: hair cycle related alterations. J Clin Pathol. 2005;58(12):1278–82.

    Article  CAS  PubMed  Google Scholar 

  24. Adly MA, Assaf HA, Nada EA, Soliman M, Hussein M. Human scalp skin and hair follicles express neurotrophin-3 and its high-affinity receptor tyrosine kinase C, and show hair cycle-dependent alterations in expression. Br J Dermatol. 2005;153(3):514–20.

    Article  CAS  PubMed  Google Scholar 

  25. Adly MA, Assaf HA, Hussein MR, Neuber K. Age-associated decrease of CD1d protein production in normal human skin. Br J Dermatol. 2006;155(1):186–91.

    Article  CAS  PubMed  Google Scholar 

  26. Sunderkotter C, Kalden H, Luger TA. Aging and the skin immune system. Arch Dermatol. 1997;133(10):1256–62.

    Article  CAS  PubMed  Google Scholar 

  27. Gilchrest BA, Murphy GF, Soter NA. Effect of chronologic aging and ultraviolet irradiation on Langerhans cells in human epidermis. J Invest Dermatol. 1982;79(2):85–8.

    Article  CAS  PubMed  Google Scholar 

  28. Fainboim L, Salamone Mdel C. CD1: a family of glycolypid-presenting molecules or also immunoregulatory proteins? J Biol Regul Homeost Agents. 2002;16(2):125–35.

    CAS  PubMed  Google Scholar 

  29. Fenske NA, Lober CW. Structural and functional changes of normal aging skin. J Am Acad Dermatol. 1986;15(4 Pt 1):571–85.

    Article  CAS  PubMed  Google Scholar 

  30. Fenske NA, Conard CB. Aging skin. Am Fam Physician. 1988;37(2):219–30.

    CAS  PubMed  Google Scholar 

  31. Sprecher E, Becker Y, Kraal G, Hall E, Harrison D, Shultz LD. Effect of aging on epidermal dendritic cell populations in C57BL/6J mice. J Invest Dermatol. 1990;94(2):247–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Adly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Adly, M.A., Assaf, H., Hussein, M.R. (2017). Cluster of Differentiation 1d (CD1d) and Skin Aging. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47398-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47398-6_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47397-9

  • Online ISBN: 978-3-662-47398-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics