Skip to main content

Duality and Universal Models for the Meet-Implication Fragment of IPC

  • Conference paper
  • First Online:
Logic, Language, and Computation (TbiLLC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8984))

Included in the following conference series:

Abstract

In this paper we investigate the fragment of intuitionistic logic which only uses conjunction (meet) and implication, using finite duality for distributive lattices and universal models. We give a description of the finitely generated universal models of this fragment and give a complete characterization of the up-sets of Kripke models of intuitionistic logic which can be defined by meet-implication-formulas. We use these results to derive a new version of subframe formulas for intuitionistic logic and to show that the uniform interpolants of meet-implication-formulas are not necessarily uniform interpolants in the full intuitionistic logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In less recent literature, these are also called Brouwerian semilattices.

  2. 2.

    Essentially the same argument as the one sketched in this paragraph can be used to give a description of an arbitrary, not necessarily finitely generated, free distributive lattice, but we will not need this in what follows.

  3. 3.

    For an equivalent characterization of descriptive general frames as the ‘compact refined’ general frames, cf. e.g. [5, Definition  2.3.2, Theorem  2.4.2].

  4. 4.

    The canonical frame and model are also known as the Henkin frame and model.

  5. 5.

    Recall that a model \(M\) is called image-finite if, for each \(w\in M\), the set of successors of \(w\) is finite.

  6. 6.

    This fact is well-known, cf. e.g. [6, p. 428]. We briefly recall the proof here. Also cf., e.g., [12, Theorem 3.2.3], for more details. Note, however, that we do not assume here that \(M\) is finite, only that \(M\) has finite depth.

  7. 7.

    We use the usual convention that \(\bigvee \emptyset = \bot \) and \(\bigwedge \emptyset = \top \).

  8. 8.

    This notion has it roots in [2]. Our ‘separated’ points are precisely those points which are ‘not inductive and not full’ in the terminology of [2, Definition 5].

References

  1. Diego, A.: Sur les algèbres de Hilbert (transl. from the Spanish original by L. Iturrioz). Collection de Logique Mathématique, vol. Série A 21. Gauthier-Villars, Paris (1966)

    Google Scholar 

  2. Renardel de Lavalette, G.R., Hendriks, A., de Jongh, D.H.J.: Intuitionistic implication without disjunction. J. Logic Comput. 22, 375–404 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Köhler, P.: Brouwerian semilattices. Trans. Amer. Math. Soc. 268, 103–126 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  4. de Jongh, D.: Investigations on the intuitionistic propositional Calculus. Ph.D. thesis, University of Wisconsin (1968)

    Google Scholar 

  5. Bezhanishvili, N.: Lattices of Intermediate and Cylindric Modal Logics. ILLC Dissertation Series, ILLC, vol. 2006-2. University of Amsterdam, Amsterdam (2006)

    Google Scholar 

  6. Chagrov, A., Zakharyaschev, M.: Modal Lc. In: Oxford Logic Guides, vol. 35. Clarendon Press, Oxford (1997)

    Google Scholar 

  7. Bezhanishvili, G., Jansana, R.: Esakia style duality for implicative semilattices. Appl. Categ. Struct. 21, 181–208 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bezhanishvili, G., Bezhanishvili, N.: An algebraic approach to canonical formulas: intuitionistic case. Rev. Symb. Log. 2, 517–549 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gehrke, M.: Canonical extensions, Esakia spaces, and universal models. In: Bezhanishvili, G. (ed.) Leo Esakia on Duality in Modal and Intuitionistic Logics. Trends in Logic: Outstanding Contributions. Springer, New York (2013). http://www.liafa.univ-paris-diderot.fr/mgehrke/Ge12.pdf

    Google Scholar 

  10. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  11. Bezhanishvili, G., Gehrke, M., Mines, R., Morandi, P.J.: Profinite completions and canonical extensions of Heyting algebras. Order 23, 143–161 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Yang, F.: Intuitionistic Subframe Formulas, \(NNIL\)-formulas, and \(n\)-universal Models, vol. 2008-12, Master of Logic Thesis Series. ILLC, University of Amsterdam (2008)

    Google Scholar 

  13. Priestley, H.A.: Representation of distributive lattices by means of ordered Stone spaces. Bull. London Math. Soc. 2, 186–190 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  14. Esakia, L.L.: Topological Kripke models. Sov. Math. Dokl. 15, 147–151 (1974)

    MATH  Google Scholar 

  15. Pitts, A.M.: Amalgamation and interpolation in the category of Heyting algebras. J. Pure and Appl. Algebra 29, 155–165 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bezhanishvili, G., Ghilardi, S.: An algebraic approach to subframe logics. Intuitionistic case. Ann. Pure Appl. Logic 147, 84–100 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Visser, A., de Jongh, D., van Benthem, J., de Lavalette, G.R.: NNIL a study in intuitionistic logic. In: Ponse, A., de Rijke, M., Venema, Y. (eds.) Modal Logics and Process Algebra: A Bisimulation Perspective, pp. 289–326 (1995)

    Google Scholar 

  18. Pitts, A.M.: On an interpretation of second order quantification in first order intuitionistic propositional logic. J. Symbolic Log. 57, 33–52 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. de Jongh, D., Zhao, Z.: Positive formulas in intuitionistic and minimal logic. In: Aher, M., Hole, D., Jerabek, E., Kupke, C. (eds.) Logic, Language, and Computation. LNCS, vol. 8984, pp. xx–yy. Springer, Heidelberg (2014)

    Google Scholar 

  20. Ghilardi, S.: Free Heyting algebras as bi-Heyting algebras. C. R. Math. Acad. Sci. Soc. R. Canada XVI, 240–244 (1992)

    MathSciNet  Google Scholar 

  21. Bezhanishvili, N., Gehrke, M.: Finitely generated free Heyting algebras via Birkhoff duality and coalgebra. Log. Methods Comput. Sci. 7, 1–24 (2011)

    Article  MathSciNet  Google Scholar 

  22. Hendriks, A.: Computations in Propositional Logic, vol. 1996-01, ILLC Dissertation Series. ILLC, University of Amsterdam (1996)

    Google Scholar 

  23. Tzimoulis, A., Zhao, Z.: The universal model for the negation-free fragment of IPC. Report X-2013-01, ILLC, University of Amsterdam (2013)

    Google Scholar 

Download references

Acknowledgements

We are thankful to Mai Gehrke for many inspiring discussions on this paper. We also thank the referees for many useful suggestions. The first listed author would also like to acknowledge the support of the Rustaveli Science Foundation of Georgia under grant FR/489/5-105/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Bezhanishvili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bezhanishvili, N., Coumans, D., Gool, S.J.v., Jongh, D.d. (2015). Duality and Universal Models for the Meet-Implication Fragment of IPC. In: Aher, M., Hole, D., Jeřábek, E., Kupke, C. (eds) Logic, Language, and Computation. TbiLLC 2013. Lecture Notes in Computer Science(), vol 8984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46906-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46906-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46905-7

  • Online ISBN: 978-3-662-46906-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics