Skip to main content

Simultaneous Localization and Mapping

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbuch der Geodäsie

Part of the book series: Springer Reference Naturwissenschaften ((SRN))

  • 1149 Accesses

Zusammenfassung

Dieses Kapitel gibt eine Einführung in die Kartenerstellung und gleichzeitige Lokalisierung mobiler Sensorplattformen. Die gemeinsame Lösung dieser beiden Probleme ist eine Voraussetzung für die Realisierung vieler technischer Systeme von leichten Fluggeräten über autonome Roboter bis hin zu mobilen Kameras. Als Simultaneous Localization and Mapping bezeichnet man die Aufgabe, die Trajektorie samt Orientierungsinformation einer sich bewegenden Plattform aus Beobachtungen zu schätzen und gleichzeitig eine Karte der Umgebung zu erstellen. Diese Aufgabe ist in vielen realen Systemen von entscheidender Bedeutung: einerseits stellen hochgenaue Karten mitunter einen Wert an sich für den Benutzer oder eine spezielle Anwendung dar, andererseits benötigen beispielsweise autonome Roboter ein solches Modell, um zielgerichtet selbstständig navigieren zu können. Das Simultaneous Localization and Mapping Problem, beziehungsweise Teilprobleme davon, werden, je nach verwendeter Sensorik, auch als Bündelausgleichung, Structure from Motion oder SLAM bezeichnet. In diesem Kapitel werden wir verschiedene Ansätze vorstellen, mit denen man das SLAM Problem adressieren kann. Dies beinhaltet neben dem klassischen Verfahren mittels Ausgleichung, welches offline auf allen Daten operiert, auch Filtertechniken wie den Kalman-Filter und den Partikel-Filter, die zu den Onlineverfahren zählen. Bei der Verwendung der Kleinsten-Quadrate Methode sowie beim Kalman-Filter wird meist eine Normalverteilung beziehungsweise eine unimodale Verteilung über die Positionen der 3D-Punkte in der Umgebung und die Orientierung des Sensors geschätzt. Im Gegensatz dazu arbeitet der Partikel-Filter nichtparametrisch und kann multiple Hypothesen über mögliche Datenassoziationen parallel schätzen. Neben den einzusetzenden Schätzverfahren wird auch skizziert, wie SLAM Systeme mit unterschiedlichen Sensoren realisiert werden können.

Dieser Beitrag ist Teil des Handbuchs der Geodäsie, Band „Photogrammetrie und Fernerkundung“, herausgegeben von Christian Heipke, Hannover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Literatur

  1. Agarwal, P., Tipaldi, G., Spinello, L., Stachniss, C., Burgard, W.: Robust map optimization using dynamic covariance scaling. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe (2013)

    Google Scholar 

  2. Ayache, N., Faugeras, O.: Building, registrating, and fusing noisy visual maps. In: International Conference on Computer Vision, London (1987)

    Google Scholar 

  3. Bailey, T.: Mobile robot localisation and mapping in extensive outdoor environments. Ph.D. thesis, University of Sydney, Sydney (2002)

    Google Scholar 

  4. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (Hrsg.) Computer Vision – ECCV 2006. Lecture Notes in Computer Science, Bd. 3951, S. 404. Springer, Berlin/Heidelberg (2006)

    Google Scholar 

  5. Besl, P., McKay, N.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  6. Bosse, M., Newman, P., Leonard, J., Teller, S.: Simultaneous localization and map building in large-scale cyclic environments using the Atlas framework. Int. J. Robot. Res. 23(12), 1113–1139 (2004)

    Article  Google Scholar 

  7. Carlevaris-Bianco, N., Eustice, R.: Generic factor-based node marginalization and edge sparsification for pose-graph SLAM. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe (2013)

    Google Scholar 

  8. Carlone, L., Aragues, R., Castellanos, J., Bona, B.: A linear approximation for graph-based simultaneous localization and mapping. In: Robotics: Science and Systems (RSS), Los Angeles (2011)

    Google Scholar 

  9. Castle, R., Klein, G., Murray, D.: Wide-area augmented reality using camera tracking and mapping in multiple regions. Comput. Vis. Image Underst. 115(6), 854–867 (2011). doi:10.1016/j.cviu.2011.02.007

    Article  Google Scholar 

  10. Cummins, M., Newman, P.: Probabilistic appearance based navigation and loop closing. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Rome, S. 2042–2048 (2007)

    Google Scholar 

  11. Cummins, M., Newman, P.: Appearance-only SLAM at large scale with FAB-MAP 2.0. Int. J. Robot. Res. 30, 1100–1123 (2010)

    Google Scholar 

  12. Davison, A.: Real-time simultaneous localisation and mapping with a single camera. In: Proceedings of the IEEE International Conference on Computer Vision, Nice, S. 1403–1410 (2003)

    Google Scholar 

  13. Davison, A., Murray, D.: Mobile robot localisation using active vision. In: European conference on Computer Vision (ECCV), S. 809–825. Springer, Berlin/Heidelberg (1998)

    Google Scholar 

  14. Davison, A., Reid, I., Molton, N., Stasse, O.: MonoSLAM: real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)

    Article  Google Scholar 

  15. Dellaert, F.: Square Root SAM: simultaneous location and mapping via square root information smoothing. In: Robotics: Science and Systems (RSS), Cambridge (2005)

    Google Scholar 

  16. Dellaert, F.: Factor graphs and GTSAM: A hands-on introduction. Technical report, Georgia Tech (2012). GT-RIM-CP & R-2012-002

    Google Scholar 

  17. Dissanayake, M., Newman, P., Clark, S., Durrant-Whyte, H., Csorba, M.: A solution to the simultaneous localization and map building (SLAM) problem. IEEE Trans. Robot. 17(3), 229–241 (2001)

    Article  Google Scholar 

  18. Doucet, A., de Freitas, N., Gordan, N. (Hrsg.): Sequential Monte-Carlo methods in practice. Springer, New York (2001)

    Google Scholar 

  19. Duckett, T., Marsland, S., Shapiro, J.: Learning globally consistent maps by relaxation. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), San Francisco, S. 3841–3846 (2000)

    Google Scholar 

  20. Duckett, T., Marsland, S., Shapiro, J.: Fast, on-line learning of globally consistent maps. Auton. Robot. 12(3), 287–300 (2002)

    Article  Google Scholar 

  21. Eade, E., Drummond, T.: Unified loop closing and recovery for real time monocular SLAM. In: British Machine Vision Conference, Leeds (2008)

    Book  Google Scholar 

  22. Eade, E., Fong, P., Munich, M.: Monocular graph SLAM with complexity reduction. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), S. 3017–3024 (2010). doi:10.1109/IROS.2010.5649205

    Google Scholar 

  23. Eliazar, A., Parr, R.: DP-SLAM: Fast, robust simultaneous localization and mapping without predetermined landmarks. In: International Joint Conference on Artificial Intelligence, Bd. 18, S. 1135–1142 (2003)

    Google Scholar 

  24. Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., Burgard, W.: An evaluation of the RGB-D SLAM system. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Saint Paul (2012)

    Google Scholar 

  25. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: Large-scale direct monocular SLAM. In: European conference on Computer Vision (ECCV), (2014)

    Google Scholar 

  26. Eustice, R., Singh, H., Leonard, J.: Exactly sparse delayed-state filters for view-based SLAM. IEEE Trans. Robot. 22(6), 1100–1114 (2006). doi:10.1109/TRO.2006.886264

    Article  Google Scholar 

  27. Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). doi:http://doi.acm.org/10.1145/358669.358692

    Google Scholar 

  28. Folkesson, J., Christensen, H.: Graphical SLAM – A self-correcting map. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Bd. 1, S. 383–390. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  29. Förstner, W.: Graphical models in geodesy and photogrammetry. Photogrammetrie, Fernerkundung, Geoinformation (PFG) 4, 255–268 (2013)

    Google Scholar 

  30. Frese, U., Hirzinger, G.: Simultaneous localization and mapping – A discussion. In: Proceedings of the IJCAI Workshop on Reasoning with Uncertainty in Robotics, Seattle, S. 17–26 (2001)

    Google Scholar 

  31. Golfarelli, M., Maio, D., Rizzi, S.: Elastic correction of dead-reckoning errors in map building. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Victoria, S. 905–911 (1998)

    Google Scholar 

  32. Google Inc.: Introducing ceres solver – a nonlinear least squares solver. http://google-opensource.blogspot.de/2012/05/introducing-ceres-solver-nonlinear.html. Zugegriffen am 01.05.2012

    Google Scholar 

  33. Grisetti, G., Kümmerle, R., Ni, K.: Robust optimization of factor graphs by using condensed measurements. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura (2012)

    Google Scholar 

  34. Grisetti, G., Kümmerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based SLAM. IEEE Trans. Intell. Transp. Syst. Mag. 2, 31–43 (2010)

    Article  Google Scholar 

  35. Grisetti, G., Kümmerle, R., Stachniss, C., Frese, U., Hertzberg, C.: Hierarchical optimization on manifolds for online 2D and 3D mapping. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Anchorage (2010)

    Google Scholar 

  36. Grisetti, G., Lordi Rizzini, D., Stachniss, C., Olson, E., Burgard, W.: Online constraint network optimization for efficient maximum likelihood map learning. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Pasadena (2008)

    Google Scholar 

  37. Grisetti, G., Stachniss, C., Burgard, W.: Improving grid-based SLAM with rao-blackwellized particle filters by adaptive proposals and selective resampling. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Barcelona, S. 2443–2448 (2005)

    Google Scholar 

  38. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with Rao-Blackwellized particle filters. IEEE Trans. Robot. 23, 34–46 (2007)

    Article  Google Scholar 

  39. Grisetti, G., Stachniss, C., Burgard, W.: Nonlinear constraint network optimization for efficient map learning. IEEE Trans. Intell. Transp. Syst. 10(3), 428–439 (2009). doi:10.1109/TITS.2009.2026444

    Article  Google Scholar 

  40. Grisetti, G., Stachniss, C., Grzonka, S., Burgard, W.: A tree parameterization for efficiently computing maximum likelihood maps using gradient descent. In: Robotics: Science and Systems (RSS), Atlanta (2007)

    Google Scholar 

  41. Grisetti, G., Tipaldi, G., Stachniss, C., Burgard, W., Nardi, D.: Fast and accurate SLAM with rao-blackwellized particle filters. J. Robot. Auton. Syst. 55(1), 30–38 (2007)

    Article  Google Scholar 

  42. Guivant, J., Nebot, E.: Optimization of the simultaneous localization and map building algorithm for real time implementation. IEEE Trans. Robot. Autom. 17(3), 242–257. (im Druck) (2001)

    Google Scholar 

  43. Gutmann, J., Konolige, K.: Incremental mapping of large cyclic environments. In: Proceedings of the 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation, Monterey, Bd. 1, S. 318–325 (1999)

    Google Scholar 

  44. Hähnel, D., Burgard, W., Fox, D., Thrun, S.: An efficient FastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, S. 206–211 (2003)

    Google Scholar 

  45. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2. Aufl. Cambridge University Press, New York (2003)

    Google Scholar 

  46. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: Rgb-d mapping: using kinect-style depth cameras for dense 3D modeling of indoor environments. Int. J. Robot. Res. 31, 647-663 (2012)

    Article  Google Scholar 

  47. Hornung, A., Wurm, K., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: An efficient probabilistic 3d mapping framework based on octrees. Auton. Robot. 34, 189–206 (2013)

    Article  Google Scholar 

  48. Ila, V., Porta, J., Andrade-Cetto, J.: Information-based compact pose SLAM. IEEE Trans. Robot. 26(1), 78–93 (2010). doi:10.1109/TRO.2009.2034435

    Article  Google Scholar 

  49. Izadi, S., Newcombe, R., Kim, D., Hilliges, O., Molyneaux, D., Hodges, S., Kohli, P., Shotton, J., Davison, A., Fitzgibbon, A.: Kinectfusion: Real-time dynamic 3D surface reconstruction and interaction. In: ACM SIGGRAPH 2011 Talks, ACM, Vancouver, S. 23 (2011)

    Google Scholar 

  50. Johannsson, H., Kaess, M., Fallon, M., Leonard, J.: Temporally scalable visual SLAM using a reduced pose graph. In: RSS Workshop on Long-term Operation of Autonomous Robotic Systems in Changing Environments, Sydney (2012)

    Google Scholar 

  51. Kaess, M., Dellaert, F.: Covariance recovery from a square root information matrix for data association. J. Robot. Auton. Syst. 57(12), 1198–1210 (2009). doi:10.1016/j.robot.2009.06.008

    Article  Google Scholar 

  52. Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., Dellaert, F.: iSAM2: incremental smoothing and mapping using the Bayes tree. Int. J. Robot. Res. 31, 217–236 (2012)

    Article  Google Scholar 

  53. Kaess, M., Ranganathan, A., Dellaert, F.: Fast incremental square root information smoothing. In: International Joint Conference on Artificial Intelligence, San Francisco (2007)

    Google Scholar 

  54. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR), Nara, S. 225–234 (2007)

    Google Scholar 

  55. Konolige, K.: Large-scale map-making. In: Proceedings of the National Conference on Artificial intelligence, AAAI Press/MIT Press, San Jose, S. 457–463 (2004)

    Google Scholar 

  56. Kretzschmar, H., Stachniss, C.: Information-theoretic compression of pose graphs for laser-based slam. Int. J. Robot. Res. 31(11), 1219–1230 (2012)

    Article  Google Scholar 

  57. Kriegman, D., Triendl, E., Binford, T.: Stereo vision and navigation in buildings for mobile robots. IEEE Trans. Robot. Autom. 5(6), 792–803 (1989)

    Article  Google Scholar 

  58. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: A general framework for graph optimization. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Shanghai (2011)

    Google Scholar 

  59. Kümmerle, R., Ruhnke, M., Steder, B., Stachniss, C., Burgard, W.: Autonomous robot navigation in highly populated pedestrian zones. J. Field Robot. 32, 565–589 (2014)

    Article  Google Scholar 

  60. Latif, Y., Lerma, C.C., Neira, J.: Robust loop closing over time. In: Proceedings of Robotics: Science and Systems, Sydney (2012)

    Google Scholar 

  61. Leonard, J., Feder, H.: A computationally efficient method for large-scale concurrent mapping and localization. In: Proceedings of the International Symposium of Robotics Research (ISRR), S. 169–176 (1999)

    Google Scholar 

  62. Leonard, J., Rikoski, R., Newman, P., Bosse, M.: Mapping partially observable features from multiple uncertain vantage points. Int. J. Robot. Res. 7(3), 943–975 (2002)

    Article  Google Scholar 

  63. Liu, Y., Thrun, S.: Results for outdoor-SLAM using sparse extended information filters. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  64. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  65. Lu, F., Milios, E.: Globally consistent range scan alignment for environmental mapping. Auton. Robot. 4, 333–349 (1997)

    Article  Google Scholar 

  66. Matthies, L., Shafer, S.: Error modeling in stereo navigation. IEEE Trans. Robot. Autom. RA-3(3), 239–248 (1987)

    Article  Google Scholar 

  67. Montemerlo, M., Thrun, S.: Large-scale robotic 3-d mapping of urban structures. In: Proceedings of the International Symposium on Experimental Robotics (ISER). Springer Tracts in Advanced Robotics (STAR), Singapore (2004)

    Google Scholar 

  68. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: A factored solution to the simultaneous localization and mapping problem. In: National Conference on Artificial Intelligence. AAAI, Edmonton (2002)

    Google Scholar 

  69. Montiel, J., Civera, J., Davison, A.: Unified inverse depth parametrization for monocular SLAM. In: Robotics: Science and Systems (RSS), MIT Press, Cambridge, MA (2006)

    Google Scholar 

  70. Moutarlier, P., Chatila, R.: Stochastic multisensory data fusion for mobile robot location and environment modeling. In: 5th International Symposium on Robotics Research, Tokyo, S. 207–216 (1989)

    Google Scholar 

  71. Mur-Artal, R., Montiel, J., Tardós, J.: Orb-slam: a versatile and accurate monocular slam system. arXiv:1502.00956 (2015)

    Google Scholar 

  72. Murphy, K., Russell, S.: Rao-Blackwellized particle filtering for dynamic Bayesian networks. In: Doucet, A., de Freitas, N., Gordon, N. (Hrsg.) Sequential Monte Carlo Methods in Practice, S. 499–516. Springer, New York (2001)

    Chapter  Google Scholar 

  73. Neira, J., Tardos, J.: Data association in stochastic mapping using the joint compatibility test. IEEE Trans. Robot. Autom. 17(6), 890–897 (2001)

    Article  Google Scholar 

  74. Neira, J., Tardos, J., Castellanos, J.: Linear time vehicle relocation in SLAM. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), S. 427–433. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  75. Newcombe, R., Davison, A., Izadi, S., Kohli, P., Hilliges, O., Shotton, J., Molyneaux, D., Hodges, S., Kim, D., Fitzgibbon, A.: KinectFusion: Real-time dense surface mapping and tracking. In: IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR), Basel, S. 127–136 (2011)

    Google Scholar 

  76. Newcombe, R., Lovegrove, S., Davison, A.: DTAM: Dense tracking and mapping in real-time. In: International Conference on Computer Vision (ICCV), Barcelona, S. 2320–2327 (2011)

    Google Scholar 

  77. Newman, P., Leonard, J., Rikoski, R.: Towards constant-time SLAM on an autonomous underwater vehicle using synthetic aperture sonar. In: Robotics Research: The Eleventh International Symposium, Siena (2003)

    Google Scholar 

  78. Ni, K., Steedly, D., Dellaert, F.: Tectonic SAM: Exact, out-of-core, submap-based SLAM. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Rome, S. 1678–1685 (2007)

    Google Scholar 

  79. Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–777 (2004)

    Article  Google Scholar 

  80. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Proceedings of the IEEE International Conference Computer Vision and Pattern Recognition, Bd. 2, S. 2161–2168 (2006). doi:10.1109/CVPR.2006.264

    Google Scholar 

  81. Olson, E.: Real-time correlative scan matching. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Kobe, S. 4387–4393 (2009). doi:10.1109/ROBOT.2009.5152375

    Google Scholar 

  82. Olson, E.: Recognizing places using spectrally clustered local matches. J. Robot. Auton. Syst. 57, 1157-1172 (2009)

    Article  Google Scholar 

  83. Olson, E., Agarwal, P.: Inference on networks of mixtures for robust robot mapping. In: Robotics: Science and Systems (RSS), Sydney (2012)

    Google Scholar 

  84. Olson, E., Leonard, J., Teller, S.: Spatially-adaptive learning rates for online incremental SLAM. In: Robotics: Science and Systems (RSS), Atlanta (2007)

    Google Scholar 

  85. Paskin, M.: Thin junction tree filters for simultaneous localization and mapping. In: International Joint Conference on Artificial Intelligence, Morgan Kaufmann Publishers Inc., San Francisco, S. 1157–1164 (2003)

    Google Scholar 

  86. Pollard, S., Porrill, J., Mayhew, J.: Predictive feed-forward stereo processing. In: Alvey Vision Conference, S. 97–102 (1989)

    Google Scholar 

  87. Pomerleaua, F., Colas, F., Siegwart, R., Magnenat, S.: Comparing icp variants on real-world data sets. Auton. Robot. 34(3), 133–148 (2013)

    Article  Google Scholar 

  88. Rosen, D., Kaess, M., Leonard, J.: An incremental trust-region method for robust online sparse least-squares estimation. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, S. 1262–1269 (2012)

    Google Scholar 

  89. Ruhnke, M., Kümmerle, R., Grisetti, G., Burgard, W.: Highly accurate 3D surface models by sparse surface adjustment. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2012)

    Google Scholar 

  90. Schneider, J., Läbe, T., Förstner, W.: Incremental real-time bundle adjustment for multi-camera systems with points at infinity. In: ISPRS Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Rostock, vol. XL-1/W2, S. 355–360 (2013)

    Google Scholar 

  91. Sibley, G., Mei, C., Reid, I., Newman, P.: Adaptive relative bundle adjustment. In: Robotics: Science and Systems (RSS), Seattle (2009)

    Google Scholar 

  92. Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: International Conference on Computer Vision (ICCV), Bd. 2, S. 1470. IEEE Computer Society, Los Alamitos (2003). doi:http://doi.ieeecomputersociety.org/10.1109/ICCV.2003.1238663

    Google Scholar 

  93. Smith, R., Self, M., Cheeseman, P.: A stochastic map for uncertain spatial relationships. In: Proceedings of the International Symposium of Robotics Research (ISRR), S. 467–474. MIT Press, Cambridge (1988)

    Google Scholar 

  94. Stachniss, C., Grisetti, G., Burgard, W., Roy, N.: Evaluation of gaussian proposal distributions for mapping with rao-blackwellized particle filters. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Diego (2007)

    Google Scholar 

  95. Strasdat, H., Davison, A., Montiel, J., Konolige, K.: Double window optimisation for constant time visual SLAM. In: International Conference on Computer Vision (ICCV), Andrew J Davison, Barcelona (2011)

    Google Scholar 

  96. Strasdat, H., Montiel, J., Davison, A.: Real-time monocular SLAM: Why filter? In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Andrew J. Davison, Anchorage (2010)

    Google Scholar 

  97. Sünderhauf, N., Protzel, P.: BRIEF-Gist – Closing the loop by simple means. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), S. 1234–1241 (2011)

    Google Scholar 

  98. Sünderhauf, N., Protzel, P.: Switchable constraints for robust pose graph SLAM. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura (2012)

    Google Scholar 

  99. Tardós, J., Neira, J., Newman, P., Leonard, J.: Robust mapping and localization in indoor environments using sonar data. Int. J. Robot. Res. 21(4), 311–330 (2002)

    Article  Google Scholar 

  100. Thrun, S., Liu, Y.: Simultaneous localization and mapping with sparse extended information filters. Int. J. Robot. Res. 23(7), 693–716 (2004)

    Article  Google Scholar 

  101. Tipaldi, G.D., Spinello, L., Burgard, W.: Geometrical FLIRT phrases for large scale place recognition in 2D range data. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe (2013)

    Google Scholar 

  102. Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle adjustment – a modern synthesis. In: Triggs, W., Zisserman, A., Szeliski, R. (Hrsg.) Vision Algorithms: Theory and Practice. Lecture Notes in Computer Science, Bd. 1883, S. 298–372. Springer, Berlin/Heidelberg (2000)

    Chapter  Google Scholar 

  103. Walter, M., Eustice, R., Leonard, J.: Exactly sparse extended information filters for feature-based SLAM. Int. J. Robot. Res. 26(4), 335–359 (2007)

    Article  Google Scholar 

  104. Whelan, T., Johannsson, H., Kaess, M., Leonard, J., McDonald, J.: Robust real-time visual odometry for dense RGB-D mapping. In: IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe (2013)

    Google Scholar 

  105. Williams, S., Dissanayake, G., Durrant-Whyte, H.: Towards multi-vehicle simultaneous localisation and mapping. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), IEEE Computer Society Press, Washington, D.C., S. 2743–2748 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrill Stachniss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Stachniss, C. (2016). Simultaneous Localization and Mapping. In: Freeden, W., Rummel, R. (eds) Handbuch der Geodäsie. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46900-2_49-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46900-2_49-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Online ISBN: 978-3-662-46900-2

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Simultaneous Localization and Mapping
    Published:
    05 August 2016

    DOI: https://doi.org/10.1007/978-3-662-46900-2_49-2

  2. Original

    Simultaneous Localization and Mapping
    Published:
    02 March 2016

    DOI: https://doi.org/10.1007/978-3-662-46900-2_49-1