Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

The practical application of theory to experiment and data analysis is a crucial component of effective advancement of electrochemical systems. This chapter takes the fundamental principles of fuel cell operation and the underlying scientific and engineering principles and applies them to laboratory experiments. Topics covered include experiments showing how fuel cell performance varies with test conditions, methodology to fit experimental data to a simple empirical model to extract physically meaningful parameters that govern fuel cell performance, impedance spectroscopy as a diagnostic for fuel cell performance, and data analyses methods to determine the performance of fuel cells. Methods are also given for the practical measurement of relevant items from cell assembly and cell pinch to relative humidity. While the lessons are relevant to all electrochemical systems, this chapter is primarily targeted at new entrants into this arena wishing to learn the basics of fuel cell operation and testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AHT:

anode humidifier temperature

CE:

counter electrode

CHT:

cathode humidifier temperature

CO:

carbon monoxide

CPE:

constant phase element

CT:

cell temperature

CV:

cyclic voltammetry

DC:

direct current

DMFC:

direct methanol fuel cell

ECSA:

electrochemical active surface area

EMI:

electromagnetic interference

FRA:

frequency response analyzer

GDE:

gas diffusion electrode

GDL:

gas diffusion layer

HAD:

hydrogen adsorption/desorption

HFR:

high-frequency resistance

IS:

impedance spectroscopy

LSV:

linear sweep voltammetry

MEA:

membrane–electrode assembly

MFC:

mass flow controller

OCV:

open circuit voltage

ORR:

oxygen reduction reaction

PEMFC:

proton-exchange membrane fuel cell

PEM:

proton-exchange membrane

PTFE:

poly(tetrafluoroethylene)

RE:

reference electrode

RH:

relative humidity

SDS:

safety data sheet

SH:

specific humidity

WE:

working electrode

References

  1. US Fuel Cell Council (USFCC): http://www.usfcc.com/resources/technicalproducts.html

  2. G. Hoogers: Fuel Cell Technology Handbook (CRC, Roca Baton 2002)

    Book  Google Scholar 

  3. H.A. Gasteiger, M.F. Mathias (Eds.): Proceedings of the International Symposium PV 2002-31 (The Electrochemical Society, Pennington 2005)

    Google Scholar 

  4. M.V. Williams, H.R. Kunz, J.M. Fenton: Analysis of polarization curves to evaluate polarization sources in hydrogen/Air PEM fuel cells, J. Electrochem. Soc. 152, A635–A644 (2005)

    Article  Google Scholar 

  5. G. Prentice: Electrochemical Engineering Principles (Prentice Hall, New Jersey 1991)

    Google Scholar 

  6. H. Xu, Y. Song, H.R. Kunz, J.M. Fenton: Effect of elevated temperature and reduced relative humidity on ORR kinetics for PEM fuel cells, J. Electrochem. Soc. 152, A1828–A1836 (2005)

    Article  Google Scholar 

  7. C.-Y. Wang: Fundamental models for fuel cell engineering, Chem. Rev. 104, 4727–4766 (2004)

    Article  Google Scholar 

  8. S. Srinivasan, E.A. Ticianelli, C.R. Derouin, A. Redondo: Advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes, J. Power Sources 22, 359–375 (1988)

    Article  Google Scholar 

  9. J. Kim, S.-L. Lee, S. Srinivasan, C.E. Chamberlin: Modeling of proton exchange membrane fuel cell performance with an empirical equation, J. Electrochem. Soc. 142, 2670–2674 (1995)

    Article  Google Scholar 

  10. R. Mosdale, S. Srinivasan: Analysis of performance and of water and thermal management in proton exchange membrane fuel cells, Electrochim. Acta 40, 413–422 (1995)

    Article  Google Scholar 

  11. Y.W. Rho, O.A. Velez, S. Srinivasan, Y.T. Kho: Mass transport phenomena in proton exchange membrane fuel cells using O2/He, O2/Ar, and O2/N2 mixtures – I. Experimental analysis, J. Electrochem. Soc. 141, 2084–2089 (1994)

    Article  Google Scholar 

  12. Y.W. Rho, S. Srinivasan, Y.T. Kho: Mass transport phenomena in proton exchange membrane fuel cells using O2/He, O2/Ar and O2/N2 mixtures – II. Theoretical analysis, J. Electrochem. Soc. 141, 2089–2096 (1994)

    Article  Google Scholar 

  13. A.J. Bard, L. Faulkner: Electrochemical Methods: Fundamentals and Applications (Wiley, New York 2001)

    Google Scholar 

  14. J. Stumper, H. Haas, A. Granados: In situ determination of MEA resistance and electrode diffusivity of a fuel cell, J. Electrochem. Soc. 152, A837–A844 (2005)

    Article  Google Scholar 

  15. E. Gileadi: Electrode Kinetics for Chemists, Chemical Engineers and Materials Scientists (VCH Publishers, Inc, New York 1993)

    Google Scholar 

  16. S. Srinivasan: Fuel Cells – From Fundamentals to Applications (Springer, New York 2006)

    Google Scholar 

  17. T.R. Ralph, G.A. Hards, J.E. Keating, S.A. Campbell, D.P. Wilkinson, M. Davis, J. St-Pierre, M.C. Johnson: Low cost electrodes for proton exchange membrane fuel cells – Performance in single cells and ballard stacks, J. Electrochem. Soc. 144, 3845–3857 (1997)

    Article  Google Scholar 

  18. C.J. Netwall, B.D. Gould, J.A. Rodgers, N.J. Nasello, K.E. Swider-Lyons: Decreasing contact resistance in proton-exchange membrane fuel cells with metal bipolar plates, J. Power Sources 227, 137–144 (2013)

    Article  Google Scholar 

  19. J.O.M. Bockris, B.E. Conway (Eds.): Modern Aspects of Electrochemistry (Plenum, New York 1977)

    Google Scholar 

  20. F. Gloaguen, J.-M. Leger, C. Lamy: Electrocatalytic oxidation of methanol on platinum nanoparticles electrodeposited onto porous carbon substrates, J. Appl. Electrochem. 27, 1052 (1997)

    Article  Google Scholar 

  21. R.N. Carter, S.S. Kocha, F.T. Wagner, M. Fay, H.A. Gasteiger: Artifacts in measuring electrode catalyst area of fuel cells through cyclic voltammetry, ECS Trans. 11, 403–410 (2007)

    Article  Google Scholar 

  22. K.C. Neyerlin, W. Gu, J. Jorne, J.A. Clark, H.A. Gasteiger: Cathode catalyst utilization for the ORR in a PEMFC, J. Electrochem. Soc. 154, B279–B287 (2007)

    Article  Google Scholar 

  23. M.D. Edmundson, F.C. Busby: Overcoming artifacts in cyclic voltammetry through the use of multiple scan rates and potential windows, ECS Trans. 41, 661–671 (2001)

    Google Scholar 

  24. E. Barsoukov, J.R. Macdonald: Impedance Spectroscopy – Theory, Experiment, and Applications (Wiley-Interscience, New York 2005)

    Book  Google Scholar 

  25. T.E. Springer, I.D. Raistrick: Electrical impedance of a pore wall for the flooded-agglomerate model of porous gas-diffusion electrodes, J. Electrochem. Soc. 136, 1594–1603 (1989)

    Article  Google Scholar 

  26. T.E. Springer, T.A. Zawodzinski, M.S. Wilson, S. Gottesfeld: Characterization of polymer electrolyte fuel cells using AC impedance spectroscopy, J. Electrochem. Soc. 143, 587–599 (1996)

    Article  Google Scholar 

  27. Y. Bultel, L. Genies, O. Antoine, P. Ozil, R. Durand: Modeling impedance diagrams of active layers in gas diffusion electrodes: Diffusion, ohmic drop effects and multi-step reactions, J. Electroanal. Chem. 527, 143–155 (2002)

    Article  Google Scholar 

  28. F. Jaouen, G. Lindbergh: Transient techniques for investigating mass-transport limitations in gas diffusion electrodes – I. Modeling the PEFC cathode, J. Electrochem. Soc. 150, A1699–A1710 (2003)

    Article  Google Scholar 

  29. Q. Guo, M. Cayetano, Y. Tsuo, E.S. De Castro, R.E. White: Study of ionic conductivity profiles of the air cathode of a PEMFC by AC impedance spectroscopy, J. Electrochem. Soc. 150, A1440–A1449 (2003)

    Article  Google Scholar 

  30. Q. Guo, R.E. White: A Steady-state impedance model for a PEMFC cathode, J. Electrochem. Soc. 151, E133–E149 (2004)

    Article  Google Scholar 

  31. S. Devan, V.R. Subramanian, R.E. White: Analytical solution for the impedance of a porous electrode, J. Electrochem. Soc. 151, A905–A913 (2004)

    Article  Google Scholar 

  32. R. Makharia, M.F. Mathias, D.R. Baker: Measurement of catalyst layer electrolyte resistance in PEFCs using electrochemical impedance spectroscopy, J. Electrochem. Soc. 152, A970–A977 (2005)

    Article  Google Scholar 

  33. O. Antoine, Y. Butel, R. Durand: Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion, J. Electroanal. Chem. 499, 85–94 (2001)

    Article  Google Scholar 

  34. B. Müller, N. Wagner, W. Schnurnberger (Eds.): Proton Conducting Membrane Fuel Cells (2nd International Symposium) (The Electrochemical Society, Pennington 1999)

    Google Scholar 

  35. J.T. Müller, P.M. Urban, W.F. Hölderich: Impedance studies on direct methanol fuel cell anodes, J. Power Sources 84, 157–160 (1999)

    Article  Google Scholar 

  36. M.E. Orazem, B. Tribollet: Electrochemical Impedance Spectroscopy (Wiley, New York 2008)

    Book  Google Scholar 

  37. D.R. Baker, W. Gu, M.F. Mathias, M. Murphy, K.C. Neyerlin (Eds.): Diagnostic Methods for Monitoring Fuel Cell Processes (The Electrochemical Society Inc., Quebec City 2005)

    Google Scholar 

  38. F.A. Uribe, T.E. Springer, S. Gottesfeld: A microelectrode study of oxygen reduction at the platinum/recast-Nafion film interface, J. Electrochem. Soc. 139, 765–773 (1992)

    Article  Google Scholar 

  39. G. Li, P.G. Pickup: Ionic conductivity of PEMFC cathodes – Effect of Nafion loading, J. Electrochem. Soc. 150, C745–C752 (2003)

    Article  Google Scholar 

  40. M.C. Lefebvre, R.B. Martin, P.G. Pickup: Characterization of ionic conductivity profiles within proton exchange membrane fuel cell gas diffusion electrodes by impedance spectroscopy, Electrochem. Solid-State Lett. 2, 259–261 (1999)

    Article  Google Scholar 

  41. J. Newman: Ohmic potential measured by interrupter techniques, J. Electrochem. Soc. 117, 507–508 (1970)

    Article  Google Scholar 

  42. C. Lagergren, G. Lindbergh, D. Simonsson: Investigation of porous electrodes by current interruption, J. Electrochem. Soc. 142, 787–797 (1995)

    Article  Google Scholar 

  43. R. Pollard, J. Newman: Mathematical modeling of the lithium-aluminum, iron sulfide battery – Part II. The influence of relaxation time on the charging characteristics, J. Electrochem. Soc. 128, 503–507 (1981)

    Article  Google Scholar 

  44. M. Murthy (Ed.): Proton conducting membrane fuel cells III – Proceedings of the International Symposium (The Electrochemical Society, Salt Lake City 2005)

    Google Scholar 

  45. Y. Liu, M. Murphy, D.R. Baker, W. Gu, C. Ji, J. Jorne, H.A. Gasteiger: Determination of electrode sheet resistance in cathode catalyst layer by AC impedance, ECS Trans. 11, 473–484 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ramani, V.K., Cooper, K., Fenton, J.M., Kunz, H.R. (2017). Polymer Electrolyte Fuel Cells. In: Breitkopf, C., Swider-Lyons, K. (eds) Springer Handbook of Electrochemical Energy. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46657-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46657-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46656-8

  • Online ISBN: 978-3-662-46657-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics