Skip to main content

Upper Atmospheric Density Retrieval from Accelerometer on Board GRACE Mission

  • Conference paper
  • First Online:
China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume III

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 342))

  • 5263 Accesses

Abstract

In order to improve the prediction accuracy of LEO, it is essential to build up an accurate atmospheric model for density prediction. However, most existing atmospheric models belong to the type of semi-empirical model, thus the data sets are not of homogeneous quality and have limited geographical and temporal coverage. Since the space-borne accelerometer could measure the total non-conservative accelerations acting on LEO directly, the atmospheric drag component could be isolated with the help of the solar and earth albedo radiation pressure models, then the atmospheric density can be calculated, which provides necessary data for making evaluation and improvement of the existing atmospheric models. This paper describes the method to retrieve the upper atmospheric density from accelerometer in detail, 3 months of observations spanning from May 2013 to July 2013 are selected to do the experiment, we use the dynamical orbit determination strategy to calibrate the accelerometers, and then retrieve the air density at the altitude of GRACE Mission. The results show that prediction models cannot exhibit the density variation in high frequency, and the in situ measurements are very useful in density analysis, in addition, it is validated that atmospheric density has a positive correlation with the solar activity intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Institute of Geodesy and Geophysics, Chinese Academy of Sciences.

References

  1. Bruinsma S et al (2004) Atmospheric densities derived from CHAMP/STAR accelerome- ter observations. Planet Space Sci 52(4):297–312

    Article  Google Scholar 

  2. Doornbos E (2012) Thermospheric density and wind determination from satellite dynamics. Springer, Berlin

    Google Scholar 

  3. Case K et al (2002) GRACE level 1B data product user handbook. JPL Publication D-22027

    Google Scholar 

  4. Petit G, Luzum B (2010) IERS conventions (2010) (No. IERS-TN-36). Bureau International Des Poids Et Mesures Sevres (France)

    Google Scholar 

  5. Bettadpur S (2009) Recommendation for a-priori bias and scale parameters for level-1B ACC data (Version 2). GRACE TN-02

    Google Scholar 

  6. Gruber T, Rummel R, Abrikosov O, van Hees R (2010) GOCE level 2 product data handbook, No 4.2. GO-MA-HPF-GS-0110

    Google Scholar 

  7. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An earth gravitational model to degree 2160: EGM2008. In: EGU General Assembly, pp 13–18

    Google Scholar 

  8. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6):394–415

    Article  Google Scholar 

  9. Sitarski G (2002) Warsaw ephemeris of the solar system: DE405/WAW. Acta Astronomica 52:471–486

    Google Scholar 

  10. Bizouard C, Gambis D (2009) The combined solution C04 for Earth orientation parameters consistent with international terrestrial reference frame 2005. In: Geodetic reference frames. Springer Berlin, pp 265–270

    Google Scholar 

  11. Moe K, Moe MM (2005) Gas–surface interactions and satellite drag co efficients. Planet Space Sci 53(8):793–801

    Article  Google Scholar 

  12. Oliver M, Eberhard G (2000) Satellite orbits: models, methods and applications. Springer, Berlin

    Google Scholar 

  13. Wong T et al (2000) Clouds and the earth’s radiant energy system (CERES) validation plan erbe-like averaging to monthly toa fluxes (SUBSYSTEM 3.0)

    Google Scholar 

  14. Drob DP, Emmert JT, Crowley G, Picone JM, Shepherd GG, Skinner W, Vincent RA (2008) An empirical model of the Earth’s horizontal wind fields: HWM07. J Geophys Res: Space Phys (1978–2012): 113 (A12)

    Google Scholar 

  15. Sentman LH (1961) Free molecule flow theory and its application to the determination of aerodynamic forces (No. LMSC-448514). Lockheed missiles and space Co Inc Sunnyvale, CA

    Google Scholar 

  16. Picone J et al (2002) NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J Geophys Res: Space Phys (1978–2012) 107(A12): SIA 15-11–SIA 15-16

    Google Scholar 

  17. Bowman BR, Tobiska WK, Marcos FA, Huang CY, Lin CS, Burke WJ (2008) A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. In: AIAA/AAS astrodynamics specialist conference and exhibit, Honolulu, Hawaii

    Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (40774012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runjing Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, R., Peng, B. (2015). Upper Atmospheric Density Retrieval from Accelerometer on Board GRACE Mission. In: Sun, J., Liu, J., Fan, S., Lu, X. (eds) China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume III. Lecture Notes in Electrical Engineering, vol 342. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46632-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46632-2_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46631-5

  • Online ISBN: 978-3-662-46632-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics