Skip to main content

Can Relativity be Considered Complete? From Newtonian Nonlocality to Quantum Nonlocality and Beyond

  • Chapter
The Message of Quantum Science

Part of the book series: Lecture Notes in Physics ((LNP,volume 899))

Abstract

We review the long history of nonlocality in physics with special emphasis on the conceptual breakthroughs over the last few years. (This was written at the end of Einstein’s year 2005, after Jürg Fröhlich invited me to talk at the Annus Mirabilis Symposium he organized et the ETH Zürich. I merely added a few relevant recent references.) Nowadays, for the first time, it is possible to study “nonlocality without signaling” from the outside, that is without all the quantum physics Hilbert space artillery. We emphasize that physics has always given a nonlocal description of Nature, except during a short 10 years gap, about from 1915 to 1925. We note that the very concept of “nonlocality without signaling” is totally foreign to the spirit of relativity, the only strictly local theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Using a small rocket, so as to displace the center of mass of the moon.

  2. 2.

    My friends know well that in my mouth “engineer” has no negative connotation, quite the opposite. For me, a physicist must be a good theorist and a good engineer! Well, I warned you, dear reader, this is a somewhat subjective article.

  3. 3.

    Another story happened to me while I was a young post-doc eager to publish some work. In a paper [8] I wrote “A quantum particle may disappear from a location A and simultaneously reappear in B, without any flow in-between”. The referee accepted the paper under the condition that this outrageous sentence is removed. This referee considered his paternalist attitude so constructive that he declared himself to me: “look how helpful I am to you” (admittedly, he was politically correct).

  4. 4.

    Somewhat surprisingly, if there are only two possible questions, then there is a strategy such that the probability that both players succeed is 50 %.

  5. 5.

    Admittedly, the danger is that both student get the bad mark! But, on average, the poor student improves.

  6. 6.

    I wish someone establishes the statistics of the occurrences of the words “Bell inequality” and “nonlocality” in Physical Review Letters. I bet that a phase transition happen in the early 1990s, after Ekert’s paper on quantum cryptography, see [16]. In 1998 I started a PRL with the sentence [11]: “Quantum theory is nonlocal.” and got considerable reactions to what was felt as a provocative statement; today the same statement can be found in many papers, not provoking any reaction.

  7. 7.

    The conclusion that follows from all these experiments is so important for the physicist’s world-view, that an experiment closing simultaneously both the locality and the detection loophole is greatly needed.

  8. 8.

    A “machine” is a physicists’s terminology for an input-output black-box that is not necessarily mechanical. I believe that this terminology appeared in the quantum physics context with the “optimal cloning machines” introduced by Bužek and Hillery [58].

  9. 9.

    Actually, there are at least three different concepts behind this word [62]. (1) There is the mathematical definition given here. (2) No faster than light communication—though light plays no special role in quantum physics. And (3), there is no-signalling as Newton thought of it: no communication without a physical carrier of the information.

  10. 10.

    More precisely, 8 is the dimension of the space of non-signaling correlations [63].

  11. 11.

    No-signaling should be understood here as in the previous sub-section on the no-cloning theorem. That is, even if two parties joint, for example Eve and Bob come together, then they should not be able to infer any information about the third party’s input, e.g. Eve and Bob should not have access no Alice’s input.

  12. 12.

    One may think that Eve should sometimes send a weakly non-local machine. But all such correlations are convex combinations of local and fully non-local NL-machines. Hence, it is equivalent for Eve to always send either a local or a NL-machine, with appropriate probabilities.

  13. 13.

    In [59] we proved that a correlation P(a, b | x, y) is nonlocal iff any possible non-signaling extensions P(a, b, e | x, y, z) has positive Alice–Bob condition mutual information, conditioned on Eve, I(A, B | E), i.e. has positive intrinsic information. This nicely complements the similar result that holds for entangled quantum states and purifications [69]. In [65] we proved that the same relation between nonlocality and positive intrinsic information does also hold when Alice announces her input and Bob adapts his output in such a way as to maximize his mutual information with Alice. Proving this in full generality would be a marvelous result.

  14. 14.

    Precisely one has: I 0(B, E) = 2 ⋅ QBER 1 and I 1(B, E) = 2 ⋅ QBER 0.

  15. 15.

    Using the reduction of an OT-box (Oblivious Transfer to a PR-box) [84] one can simulate any 2-qubit state with one OT-box.

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Weinberg, S.: Dreams of a Final Theory. Vintage/Random House, New York (1994)

    Google Scholar 

  3. Shimony, A.: In: Kamefuchi, S. (ed.) Foundations of Quantum Mechanics in the Light of New Technology. Physical Society of Japan, Tokyo (1983)

    Google Scholar 

  4. Gilder, L.L.: The Age of Entanglement. Knopf Publishing, New York (2006)

    Google Scholar 

  5. Cohen, B., Schofield, R.E. (eds.): Isaac Newton, Papers & Letters on Natural Philosophy and Related Documents, p. 302. Harvard University Press, Cambridge (1958)

    Google Scholar 

  6. Schrödinger, E.: Naturwissenschaften 23, 807 (1935)

    Article  ADS  Google Scholar 

  7. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy. Cambridge University Press, Cambridge (1987/Revised edition 2004)

    Google Scholar 

  8. Gisin, N.: J. Math. Phys. 24, 1779–1782 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Mandel, L.: Optical Coherent & Quantum Optics. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  11. Tittel, W., Brendel, J., Gisin, N., Zbinden, H.: Phys. Rev. Lett. 81, 3563–3566 (1998)

    Article  ADS  Google Scholar 

  12. Tittel, W., Brendel, J., Gisin, N., Zbinden, H.: Long-distance Bell-type tests using energy-time entangled photons. Phys. Rev. A 59, 4150–4163 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  13. Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H., Legré, M., Gisin, N.: Phys. Rev. Lett. 93, 180502 (2004)

    Article  ADS  Google Scholar 

  14. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: M ≤ 3 is equivalent to the famous CHSH-Bell inequality. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  15. Cirel’son, B.S.: Lett. Math. Phys. 4, 93 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  16. Gisin, N.: Bell inequalities: many questions, a few answers. In: Myrvold, W.C., Christian, J. (eds.) Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle. The Western Ontario Series in Philosophy of Science, pp. 125–140. Springer, Berlin (2009). Essays in honour of Abner Shimony

    Google Scholar 

  17. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, p. 152. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  18. Freedman, J., Clauser, J.F.: Phys. Rev. Lett. 28, 938–941 (1972); Aspect, A., Grangier, P., Roger, G.: Phys. Rev. Lett. 47, 460–463 (1981); Ou, Z.Y., Mandel, L.: Phys. Rev. Lett. 61, 50–53 (1988); Shih, Y.H., Alley, C.O.: Phys. Rev. Lett. 61, 2921 (1988); Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.H.: Phys. Rev. Lett. 75, 4337 (1995); Rarity, J.G., Tapster, P.R.: Phys. Rev. Lett. 64, 2495–2498 (1990); Brendel, J., Mohler, E., Martienssen, W.: Europhys. Lett. 20, 575–580 (1992); Tapster, P.R., Rarity, J.G., Owens, P.C.M.: Phys. Rev. Lett. 73, 1923–1926 (1994)

    Google Scholar 

  19. Weihs, G., Reck, M., Weinfurter, H., Zeilinger, A.: Phys. Rev. Lett. 81, 5039 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Rowe, M.A., et al.: Nature 149, 791–794 (2001)

    Article  Google Scholar 

  21. Matsukevich, D.N., et al.: Phys. Rev. Lett. 100, 150404 (2008)

    Article  ADS  Google Scholar 

  22. Barreiro, J.T., Bancal, J.-D.: Nat. Phys. (2013). arXiv:1303.2433

    Google Scholar 

  23. Aspect, A., Dalibard, J., Roger, G.: Phys. Rev. Lett. 49, 1804 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  24. Gisin, N., Zbinden, H.: Phys. Lett. A 264, 103–107 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Giustina, M., et al.: Nature 497, 227–230 (2013)

    Article  ADS  Google Scholar 

  26. Christensen, B.G., et al.: Detection-Loophole-Free Test of Quantum Nonlocality, and Applications. Phys. Rev. Lett. 111, 130406 (2013)

    Article  ADS  Google Scholar 

  27. Zbinden, H., Brendel, J., Tittel, W., Gisin, N.: Phys. Rev. A 63, 022111 (2001); Zbinden, H., Brendel, J., Gisin, N., Tittel, W.: J. Phys. A: Math. Gen. 34, 7103–7109 (2001)

    Google Scholar 

  28. Salart, D., Baas, A., Branciard, C., Gisin, N., Zbinden, H.: Testing the speed of spooky action at a distance. Nature 454, 861–864 (2008)

    Article  ADS  Google Scholar 

  29. Cocciaro, B., Faetti, S., Fronzoni, L.: A lower bound for the velocity of quantum communications in the preferred frame. Phys. Lett. A 375, 379–384 (2011)

    Article  ADS  MATH  Google Scholar 

  30. Yin, J., et al.: Phys. Rev. Lett. 110, 260407 (2013)

    Article  ADS  Google Scholar 

  31. Bancal, J.D., et al.: Nat. Phys. 8, 867–870 (2012)

    Article  Google Scholar 

  32. Gisin, N., Scarani, V., Tittel, W., Zbinden, H.: 100 years of Q theory. Proc. Ann. Phys. 9, 831–842 (2000). quant-ph/0009055; Stefanov, A., Zbinden, H., Gisin, N.: Phys. Rev. Lett. 88, 120404 (2002); Gisin, N.: Sundays in a quantum engineer’s life. In: Bell, J.S. (ed.) Proceedings of the Conference in Commemoration, Vienna, 10–14 November 2000; Scarani, V., Tittel, W., Zbinden, H., Gisin, N.: Phys. Lett. A 276, 1–7 (2000)

    MATH  MathSciNet  Google Scholar 

  33. Suarez, A., Scarani, V.: Phys. Lett. A 232, 9 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  34. Bohm, D.: Phys. Rev. 85, 166–193 (1952); Bohm, D., Hilley, B.J.: The Undivided Universe. Routledge, New York (1993)

    Google Scholar 

  35. Popescu, S., Rohrlich, D.: Found. Phys. 24, 379 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  36. Rohrlich, D., Popescu, S.: quant-ph/9508009 and quant-ph/9709026

    Google Scholar 

  37. Pironio, S., et al.: Nature 464, 1021–1024 (2010)

    Article  ADS  Google Scholar 

  38. Gisin, N.: Science 326, 1357–1358 (2009). quant-ph/0503007

    Google Scholar 

  39. Werner, R.F.: Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  40. Terhal, B.M., Wolf, M.M., Doherty, A.C.: Physics Today 56, 46–52 (2003)

    Article  Google Scholar 

  41. Mermin, N.D.: quant-ph/9609013 and quant-ph/9801057

    Google Scholar 

  42. Esfeld, M.: Stud. Hist. Philos. Mod. Phys. 35B, 601–617 (2004)

    Article  MathSciNet  Google Scholar 

  43. Peng, C.-Z., et al.: Phys. Rev. Lett. 94, 150501 (2005)

    Article  ADS  Google Scholar 

  44. Zhao, Z., et al.: Nature 430, 54–58 (2004)

    Article  ADS  Google Scholar 

  45. Haeffner, H., et al.: Appl. Phys. B 81, 151 (2005)

    Article  ADS  Google Scholar 

  46. Blinov, B.B., Moehring, D.L., Duan, L.M., Monroe, C.: Nature 428, 153–157 (2004)

    Article  ADS  Google Scholar 

  47. Volz, J., et al.: quant-ph/0511183

    Google Scholar 

  48. Julsgaard, B., Sherson, J., Cirac, J.I., Polzik, E.S.: Nature 432, 482–486 (2004)

    Article  ADS  Google Scholar 

  49. Altewischer, E., et al.: Nature 418, 304 (2002)

    Article  ADS  Google Scholar 

  50. Fasel, S., et al.: Phys. Rev. Lett. 94, 110501 (2005)

    Article  ADS  Google Scholar 

  51. Fasel, S., et al.: New J. Phys. 8, 13 (2006)

    Article  ADS  Google Scholar 

  52. Chou, C.W., et al.: Nature 438, 828–832 (2005)

    Article  ADS  Google Scholar 

  53. Pan, J.W., Bouwmeester, D., Weinfurter, H., Zeilinger, A.: Phys. Rev. Lett. 80, 3891 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  54. Jennewein, T., Weihs, G., Pan, J.-W., Zeilinger, A.: Phys. Rev. Lett. 88, 017903 (2002)

    Article  ADS  Google Scholar 

  55. de Riedmatten, H., et al.: Phys. Rev. A 71, 050302 (2005)

    Article  Google Scholar 

  56. Tanzilli, S., et al.: Nature 437, 116–120 (2005)

    Article  ADS  Google Scholar 

  57. Tsirelson, B.S.: Hadronic J. Suppl. 8, 329 (1993)

    MATH  MathSciNet  Google Scholar 

  58. Bužek, V., Hillery, M.: Phys. Rev. A 54, 1844 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  59. Masanes, L., Acin, A., Gisin, N.: Phys. Rev. A. 73, 012112 (2006)

    Article  ADS  Google Scholar 

  60. Barrett, J., Linden, N., Massar, S., Pironio, S., Popescu, S., Roberts, D.: Phys. Rev. A 71, 022101 (2005)

    Article  ADS  Google Scholar 

  61. van Dam, W.: quant-ph/0501159; Wolf, S., Wullschleger, J.: Proceedings of 2006 IEEE Information Theory Workshop (ITW) (2006); Buhrman, H., Christandl, M., Unger, F., Wehner, S., Winter, A.: Proc. R. Soc. A 462, 1919–1932 (206); Short, T., Gisin, N., Popescu, S.: Quant. Inf. Proc. 5, 131–138 (2006); Barrett, J., Pironio, S.: Phys. Rev. Lett. 95, 140401 (2005); Jones, N.S., Masanes, L.: Phys. Rev. A 72, 052312 (2005); Barrett, J.: Phys. Rev. A 75, 032304 (2007)

    Google Scholar 

  62. Gisin, N.: Quantum correlations in Newtonian space and time: arbitrarily fast communication or nonlocality. In: Struppa, D.C., Tollaksen, J.M. (eds.) Quantum Theory: A Two-Time Success Story, Yakir Aharonov Festschrift, pp. 185–204. Springer (2013)

    Google Scholar 

  63. Collins, D., Gisin, N.: J. Phys. A: Math. Gen. 37, 1775 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  64. Masanes, L., Acin, A., Gisin, N.: Phys. Rev. A 73, 012112 (2006)

    Article  ADS  Google Scholar 

  65. Acin, A., Gisin, N., Masanes, L.: Phys. Rev. Lett. 97, 120405 (2006)

    Article  ADS  Google Scholar 

  66. Acin, A., Masanes, L., Pironio, S.: New J. Phys. 8, 126 (2006)

    Article  ADS  Google Scholar 

  67. Barrett, J., Hardy, L., Kent, A.: Phys. Rev. Lett. 95, 010503 (2005)

    Article  ADS  Google Scholar 

  68. Pironio, S., et al.: New J. Phys. 11, 1–25 (2009)

    Article  Google Scholar 

  69. Gisin, N., Wolf, S.: Phys. Rev. Lett. 83, 4200 (1999); Gisin, N., Wolf, S.: Proceedings of CRYPTO 2000. Lecture Notes in Computer Science, vol. 1880, p. 482. Springer, Berlin (2000). quant-ph/0005042; Acin, A., Gisin, N.: Phys. Rev. Lett. 94, 020501 (2005). quant-ph/0310054

    Google Scholar 

  70. Bennett, C.H., Brassard, G.: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, p. 175. IEEE Press, New York (1984)

    Google Scholar 

  71. Shor, P.W., Preskill, J.: Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  72. Kraus, B., Gisin, N., Renner, R.: Phys. Rev. Lett. 95, 080501 (2005). quant-ph/0410215

    Google Scholar 

  73. Maudlin, T.: Philos. Sci. Assoc. 1, 404–417 (1992)

    Google Scholar 

  74. Brassard, G., Cleve, R., Tapp, A.: Phys. Rev. Lett. 83, 1874 (1999)

    Article  ADS  Google Scholar 

  75. Steiner, M.: Phys. Lett. A 270, 239 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  76. Gisin, B., Gisin, N.: Phys. Lett. A 260, 323 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  77. Toner, B.F., Bacon, D.: Phys. Rev. Lett. 91, 187904 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  78. Scarani, V., Gisin, N.: Phys. Lett. A 295, 167–174 (2002). quant-ph/0110074

    Google Scholar 

  79. Scarani, V., Gisin, N.: Braz. J. Phys. 35, 328–332 (2005). quant-ph/0410025

    Google Scholar 

  80. Cerf, N.J., Gisin, N., Massar, S., Popescu, S.: Phys. Rev. Lett. 94, 220403 (2005)

    Article  ADS  Google Scholar 

  81. Degorre, J., Laplante, S., Roland, J.: Phys. Rev. A 72, 062314 (2005)

    Article  ADS  Google Scholar 

  82. Brunner, N., Gisin, N., Scarani, V.: New J. Phys. 7, 1–14 (2005). quant-ph/0412109

    Google Scholar 

  83. Brunner, N., Gisin, N., Popescu, S.: Phys. Rev. A 78, 052111 (2008)

    Article  ADS  Google Scholar 

  84. Wolf, S., Wullschleger, J.: quant-ph/0502030

    Google Scholar 

  85. Acin, A., Gill, R., Gisin, N.: Phys. Rev. Lett. 95, 210402 (2005). quant-ph/0506225; and for a recent review read: Methot, A., Scarani, V.: Quantum Inf. Comput. 7, 157–170 (2007)

    Google Scholar 

  86. Cohen, R.S., Horne, M., Stachel, J. (eds.): Experimental Metaphysics. Kluwer, Boston (1997)

    MATH  Google Scholar 

Download references

Acknowledgements

This article has been inspired by talks I gave in 2005 at the IOP conference on Einstein in Warwick, the QUPON conference in Vienna, the Annus Mirabilis Symposium in Zurich, le séminaire de l’Observatoire de Paris and the Ehrenfest Colloquium in Leiden. This work has been supported by the EC under projects RESQ and QAP (contract n. IST-2001-37559 and IST-015848) and by the Swiss NCCR Quantum Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Gisin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gisin, N. (2015). Can Relativity be Considered Complete? From Newtonian Nonlocality to Quantum Nonlocality and Beyond. In: Blanchard, P., Fröhlich, J. (eds) The Message of Quantum Science. Lecture Notes in Physics, vol 899. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46422-9_8

Download citation

Publish with us

Policies and ethics