Skip to main content

Pre-impregnated Textile Semi-finished Products (Prepregs)

  • Chapter
Textile Materials for Lightweight Constructions

Abstract

Pre-impregnated semi-finished textile products (prepregs), are an important base material for the manufacture of thermoset and thermoplastic composite materials. They consist of a usually flat and planar textile reinforcement structure and are combined with thermoset or thermoplastic matrices required for the production of the final component. Both short fibers or continuous filaments and textile fabrics, such as woven fabrics or multiaxial warp-knitted fabrics, can be used as base material. The basic principle of using this special textile semi-finished product is to separate the step of impregnating the reinforcement structure with the matrix during composite material production from the final step of producing the component form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. FLEMMING, M.; ZIEGMANN, G.; ROTH, S.: Faserverbundbauweisen - Fertigungsverfahren mit duroplastischer Matrix. Berlin, Heidelberg : Springer Verlag, 1999

    Google Scholar 

  2. PARTINGTON, N.: Prepregs for race boats: Adapting aerospace materials to the marine world. In: JEC Composites Magazine (2009), No. 51, pp. 30–33

    Google Scholar 

  3. NEITZEL, M.; MITSCHANG, P.: Handbuch Verbundwerkstoffe. München,Wien : Carl Hanser Verlag, 2004

    Google Scholar 

  4. BÜLTJER, U.: Produktion von GFK und duroplastischen Formmassen in Europa. In: Proceedings.7. Internationale AVK-TV Tagung. Baden-Baden, Germany, 2004

    Google Scholar 

  5. EHRENSTEIN, G.: Faserverbund-Kunststoffe. München, Wien : Carl Hanser Verlag, 2006

    Google Scholar 

  6. KANNEBLEY, G. et al.: AVK-TV-Handbuch. Frankfurt, 2004

    Google Scholar 

  7. LIEBOLD, R.: Harzmatten in engen Toleranzen herstellen. In: Kunststoffe 81 (1991), No. 10, pp. 923–928

    Google Scholar 

  8. REUTHER, E.: Kohlefaser SMC für Strukturbauteile. In: Proceedings. 7. Internationale AVKTV Tagung. Baden-Baden, Germany, 2004

    Google Scholar 

  9. DAVIS, B. A. et al.: Compression Moulding. München, Wien : Carl Hanser Verlag, 2003

    Google Scholar 

  10. HELLRICH, W.; HARSCH, G.; HAENLE, S.: Werkstoff-Führer Kunststoffe - Eigenschaften, Prüfungen, Kennwerte. München, Wien : Carl Hanser Verlag, 2004

    Google Scholar 

  11. ANONYM: Prepreg Technology, Publication No. FGU 017b (Company document Hexcel Corporation). 2005

    Google Scholar 

  12. FORD, R.; GRIFFITHS, B.: Formable aligned-fibre composite materials. In: JEC Composites Magazine (2009), No. 50, pp. 52–54

    Google Scholar 

  13. PARTRIDGE, I. K.; CARTÍE, D. D. R.: Delamination resistant laminates by Z-Fiber® pinning: Part I manufacture and fracture performance. In: Composites: Part A 36 (2005), No. 1, pp. 55–64. DOI 10.1016/j.compositesa.2004.06.029

    Google Scholar 

  14. MOURITZ, A. P.: Review of z-pinned composite laminates. In: Composites: Part A 38 (2007), No. 12, pp. 2383–2397. DOI 10.1016/j.compositesa.2007.08.016

  15. BYUN, J.-H.; SONG, S.-W.; LEE, C.-H.; UM, M.-K.; HWANG, B.-S.: Impact properties of laminated composites stitched with z-fibers. In: Proceedings. 15th International Conference on Composite Materials. Durban, South Africa, 2005

    Google Scholar 

  16. GRASSI, M.; ZHANG, X.; MEO, M.: Prediction of stiffness and stresses in z-fibre reinforced composite laminates. In: Composites: Part A 33A (2002), No. 12, pp. 1644–1653. DOI 10.1016/S1359–835X(02)00137–9

  17. MILNER, S.: Innovative prepreg systems for the marine industry. In: JEC Composites Magazine (2007), No. 35, pp. 37–39

    Google Scholar 

  18. ERNST, H.; HENNING, F.; GEIGER, O.: Neueste LFT-D Direkttechnologie für hochbelastbare Bauteile und Komponenten mit hoher Oberflächengüte. In: Proceedings. 10. Dresdner Leichtbausymposium. Dresden, Germany, 2006, pp. 1–62

    Google Scholar 

  19. GEIGER, O.: Hinterformen von Folien mit langfaserverstärkten Thermoplasten. In: Proceedings. 7. Internationale AVK-TV Tagung. Baden-Baden, Germany, 2004

    Google Scholar 

  20. PAUL, Ch.; CHERIF, Ch.; HANUSCH, J.: Dreikomponenten-Hybridgarn und –Hybridgarngestricke für komplexe Leichtbauanwendungen. In: Proceedings. 8. Dresdner Textiltagung. Dresden, Germany, 2006

    Google Scholar 

  21. CHOI, B. D.: Entwicklung von Commingling-Hybridgarnen für faserverstärkte thermoplastische Verbundwerkstoffe. Dresden, Technische Universität Dresden, Fakultät Maschinenwesen, Dissertation, 2005

    Google Scholar 

  22. KALDENHOFF, R.: Friktionsspinn-Hybridgarne als neuartige textile Halbzeuge zur Herstellung von Faserverbundkunststoffen. Aachen, RWTH Aachen, Fakultät für Maschinenwesen, Dissertation, 1996

    Google Scholar 

  23. PAPPADÀ, S.; RAMETTA, R.; SUPPRESSA, G.; PASSARO, A.; MAFFEZZOLI, A.: PPScarbon reinforced panals with improved damage tolerance. In: Proceedings. 32nd International SAMPE Conference - New Material Characteristics to cover New Application Needs. Paris, France, 2011

    Google Scholar 

  24. ORAWATTANASRIKUL, S.: Experimentelle Analyse der Scherdeformation biaxial verstärkter Mehrlagengestricke. Dresden, Technische Universität Dresden, Fakultät Maschinenwesen, Dissertation, 2006

    Google Scholar 

  25. HÖRSTING, K.: Rationalisierung der Fertigung langfaserverstärkter Verbundwerkstoffe durch den Einsatz multiaxialer Gelege. Aachen, RWTH Aachen, Fakultät für Maschinenwesen, Dissertation, 1994

    Google Scholar 

  26. FLEMMING, M.; ZIEGMANN, G.; ROTH, S.: Faserverbundbauweise - Halbzeuge und Bauweisen. Berlin, Heidelberg : Springer Verlag, 1996

    Google Scholar 

  27. HENNINGER, F. H.: Beitrag zur Entwicklung neuartiger Fertigungsverfahren zur Herstellung von kontinuierlich faserverstärkten Thermoplasten. Kaiserslautern, Technische Universität Kaiserslautern, Fachbereich Maschinenbau und Verfahrenstechnik, Dissertation, 2005

    Google Scholar 

  28. HOFFMANN, L.; RENN, M.; DRUMMER, D.; MÜLLER, T.: FIT-Hybrid - Hochbelastbare Faserverbundbauteile großserientauglich hergestellt. In: Leightweightdesign (2011), No. 2, pp.38–43

    Google Scholar 

  29. RAMANI, K.; HOYLE, C. H.: Processing of thermoplastic composites using a powder slurry technique, I. Impregnation and preheating. In: Materials and Manufacturing Processes 10 (1995), No. 6, pp. 1169–1182. DOI 10.1080/10426919508935100

    Google Scholar 

  30. SALA, G.: Heated chamber winding of thermoplastic powder-impregnated composites, Part 1, Technology and basic thermomechanical aspects. In: Composites. Part A 27 (1996), No. 5, pp. 387–392. DOI 10.1016/1359–835X(95)00036–2

    Google Scholar 

  31. OSTGATHE, M.; MAYER, Ch.; NEITZEL, M.: Organobleche aus Thermoplastpulver. In: Kunststoffe 86 (1996), No. 12, pp. 1838–1840

    Google Scholar 

  32. MÄDER, E.; ROTHE, C.: Maßschneidern von Hybridgarnen für effektive Verbundeigenschaften. In: Proceedings. 8. Dresdner Textiltagung. Dresden, Germany, 2006

    Google Scholar 

  33. CHERIF, Ch.; RÖDEL, H.; HOFFMANNN, G.; DIESTEL, O.; HERZBERG, C.; PAUL, Ch.; SCHULZ, Ch.; GROSSMANN, K.; MÜHL, A.; MÄDER, E.; BRÜNIG, H.: Textile Verarbeitungstechnologien für hybridgarnbasierte komplexe Preformstrukturen /Textile manufacturing technologies for hybrid based complex preform structures. In: Journal of Plastics Technology (2009), No. 2, pp. 103–129

    Google Scholar 

  34. ADAM, F.; HUFENBACH, W.; GROSSMANN, K.; MODLER, K.-H.; HANKE, U.; LIN, S.; MODLER, N.; KRAHL, M.: Processing of Novel 3D Hybrid Yarn Textile Thermoplastic Composites Using Process-adapted Consolidation Kinematics. In: Proceedings. 8. Dresdner Textiltagung. Dresden, Germany, 2006

    Google Scholar 

  35. HUFENBACH, W. A.; MODLER, N.; KRAHL, M.; HORNIG, A.; FERKEL, H.; KURZ, H.; EHLEBEN, M.: Leichtbausitzschalen im Serientakt. Integrales Bauweisenkonzept. In: Kunststoffe 100 (2010), pp. 56–59

    Google Scholar 

Additional Literature

  • ADVANI, S. G.; HSIAO, K.T. (Editors): Manufacturing techniques for polymer matrix composites (PMCs). Woodhead publishing, 2012, ISBN 9780857090676

    Google Scholar 

  • BALASUBRAMANIAN, M.: Composite materials and processing. CRC Press, 2014, ISBN 9781439879351

    Google Scholar 

  • LUKASZEWICZ, DIRK H.-J. A.; WARD, C.; POTTER, K. D.: The engineering aspects of automated prepreg layup: History, present and future. Composites: Part B 43 (2012) pp. 997–1009

    Google Scholar 

  • SEFERIS, J. C.; VELISARIS, C. N.; DRAKONAKIS, V. M.: Prepreg manufacturing. Wiley Encyclopedia of Composites, 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Hausding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Diestel, O., Hausding, J. (2016). Pre-impregnated Textile Semi-finished Products (Prepregs). In: Cherif, C. (eds) Textile Materials for Lightweight Constructions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46341-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46341-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46340-6

  • Online ISBN: 978-3-662-46341-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics