Skip to main content

Cell-Specific Aptamers for Disease Profiling and Cell Sorting

  • Chapter
  • First Online:
Aptamers Selected by Cell-SELEX for Theranostics

Abstract

The molecular recognition of medically relevant cell-surface proteins and other biomarkers by molecular probes plays a major role in this current era of molecular medicine. Molecular probes have served as platforms for diagnosis, prognostic indication and targeted radio- or chemotherapy in cancer medicine. Since cancer is generally a heterogeneous disease, the elucidation of new disease specific molecular features will facilitate our understanding of cancer. The development of new molecular probes to detect disease specific features will improve our ability to specifically target and treat cancers. Cell-specific aptamers have emerged as unique candidates for molecular identification of cancer cells. Single runs of cell-SELEX can generate panels of aptamers that target disease specific molecular markers with high affinity and selectivity. We have shown that these panels can be used for molecular profiling of cancer and aid in the diagnosis of cancer. The ability to detect diseased cells in biological fluids is important for early detection, monitoring disease progression or remission, and tracking drug efficacy. Our research has shown that aptamers can be used to purify cells from a flowing suspension of biological fluid. When integrated into microfluidic devices, aptamers can be used for enrichment of rare tumor cells and multiplexed cell sorting of heterogeneous cell mixtures. For these reasons, aptamers have emerged as unique candidates for molecular recognition and cell-isolation and their future contributions will be a key factor in molecular medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  2. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  3. Mallikaratchy P, Stahelin RV, Cao Z, Chob W, Tan W (2006) Selection of DNA ligands for protein kinase C-delta. Chem Commun 3229–3231

    Google Scholar 

  4. Shangguan D, Li Y, Tang ZW, Cao ZHC, Chen HW et al (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. In: Proceedings of the national academy of sciences of the United States of America, vol 103, pp 11838–11843

    Google Scholar 

  5. Tang ZW, Shangguan D, Wang KM, Shi H, Sefah K et al (2007) Selection of aptamers for molecular recognition and characterization of cancer cells. Anal Chem 79:4900–4907

    Article  CAS  Google Scholar 

  6. Chen HW, Medley CD, Sefah K, Shangguan D, Tang ZW et al (2008) Molecular recognition of small-cell lung cancer cells using aptamers. ChemMedChem 3:991–1001

    Article  CAS  Google Scholar 

  7. Sefah K, Tang ZW, Shangguan DH, Chen H, Lopez-Colon D et al (2009) Molecular recognition of acute myeloid leukemia using aptamers. Leukemia 23:235–244

    Article  CAS  Google Scholar 

  8. Sefah K, Meng L, Lopez-Colon D, Jimenez E, Liu C et al (2010) DNA aptamers as molecular probes for colorectal cancer study. PLoS One 5(12):e14269

    Article  Google Scholar 

  9. Sefah K, Shangguan D, Xiong X, O’Donoghue MB, Tan W (2010) Development of DNA aptamers using cell-SELEX. Nat Protoc 5:1169–1185

    Article  CAS  Google Scholar 

  10. Mattanovich D, Borth N (2006) Applications of cell sorting in biotechnology. Microb Cell Fact 5(1):12

    Article  Google Scholar 

  11. Hong B, Zu Y (2013) Detecting circulating tumor cells: current challenges and new trends. Theranostics 3:377–394

    Article  CAS  Google Scholar 

  12. Orfao A, RuizArguelles A (1996) General concepts about cell sorting techniques. Clin Biochem 29:5–9

    Article  CAS  Google Scholar 

  13. Basu S, Campbell HM, Dittel BN, Ray A (2010) Purification of specific cell population by fluorescence activated cell sorting (FACS). J Visual Exp: JoVE

    Google Scholar 

  14. Pruszak J, Sonntag K-C, Aung MH, Sanchez-Pernaute R, Isacson O (2007) Markers and methods for cell sorting of human embryonic stem cell-derived neural cell populations. Stem Cells 25:2257–2268

    Article  Google Scholar 

  15. Zehentner BK, Fritschle W, Stelzer T, Ghirardelli KM, Hunter K et al (2006) Minimal disease detection and confirmation in hematologic malignancies: combining cell sorting with clonality profiling. Clin Chem 52:430–437

    Article  CAS  Google Scholar 

  16. Hou HW, Warkiani ME, Khoo BL, Li ZR, Soo RA et al (2013) Isolation and retrieval of circulating tumor cells using centrifugal forces. Scientific Reports 3

    Google Scholar 

  17. Phillips JA, Xu Y, Xia Z, Fan ZH, Tan W (2008) Enrichment of cancer cells using aptamers immobilized on a microfluidic channel. Anal Chem 81:1033–1039

    Article  Google Scholar 

  18. Martin JA, Phillips JA, Parekh P, Sefah K, Tan W (2011) Capturing cancer cells using aptamer-immobilized square capillary channels. Mol BioSyst 7:1720–1727

    Article  CAS  Google Scholar 

  19. Liu G, Mao X, Phillips JA, Xu H, Tan W et al (2009) Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal Chem 81:10013–10018

    Article  CAS  Google Scholar 

  20. Liu Y, Bae SW, Wang K, Hong J-I, Zhu Z et al (2010) The effects of flow type on aptamer capture in differential mobility cytometry cell separations. Anal Chim Acta 673:95–100

    Article  CAS  Google Scholar 

  21. Sheng W, Chen T, Katnath R, Xiong X, Tan W et al (2012) Aptamer-enabled efficient isolation of cancer cells from whole blood using a microfluidic device. Anal Chem 84:4199–4206

    Article  CAS  Google Scholar 

  22. Sheng W, Chen T, Tan W, Fan ZH (2013) Multivalent DNA nanospheres for enhanced capture of cancer cells in microfluidic devices. ACS Nano 7:7067–7076

    Article  CAS  Google Scholar 

  23. Zhao W, Cui CH, Bose S, Guo D, Shen C et al (2012) Bioinspired multivalent DNA network for capture and release of cells. In: Proceedings of the national academy of sciences of the United States of America, vol 109, pp 19626–19631

    Google Scholar 

  24. Xu Y, Phillips JA, Yan J, Li Q, Fan ZH et al (2009) Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. Anal Chem 81:7436–7442

    Article  CAS  Google Scholar 

  25. Cross D, Burmester JK (2004) The promise of molecular profiling for cancer identification and treatment. Clin Med Res 2:147–150

    Article  Google Scholar 

  26. Weiss G (2013) Applied molecular profiling: evidence-based decision-making for anticancer therapy community oncology: frontline medical communications. pp. 115–121

    Google Scholar 

  27. Murphy CG, Fornier M (2010) HER2-positive breast cancer: beyond trastuzumab. Oncology 24:410–415

    Google Scholar 

  28. Paik S, Shak S, Tang G, Kim C, Baker J et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826

    Article  CAS  Google Scholar 

  29. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AAM et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  Google Scholar 

  30. Wang YX, Klijn JGM, Zhang Y, Sieuwerts A, Look MP et al (2005) Gene-expression pro-files to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679

    Article  CAS  Google Scholar 

  31. Chang HY, Nuyten DSA, Sneddon JB, Hastie T, Tibshirani R et al (2005) Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. In: Proceedings of the national academy of sciences of the United States of America, vol 102, pp 3738–3743

    Google Scholar 

  32. Alizadeh A, Eisen M, Davis RE, Ma C, Sabet H et al (1999) The lymphochip: a specialized cDNA microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes. Cold Spring Harb Symp Quant Biol 64:71–78

    Article  CAS  Google Scholar 

  33. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511

    Article  CAS  Google Scholar 

  34. Valk PJM, Verhaak RGW, Beijen MA, Erpelinck CAJ, van Doorn-Khosrovani SBV et al (2004) Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350:1617–1628

    Article  CAS  Google Scholar 

  35. Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF et al (2004) Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 350:1605–1616

    Article  CAS  Google Scholar 

  36. Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E et al (2004) Gene expression profiling identifies clinically relevant subtypes of prostate cancer. In: Proceedings of the national academy of sciences of the United States of America, vol 101, pp 811–816

    Google Scholar 

  37. Latil A, Bieche I, Chene L, Laurendeau I, Berthon P et al (2003) Gene expression profiling in clinically localized prostate cancer: a four-gene expression model predicts clinical behavior. Clin Cancer Res 9:5477–5485

    CAS  Google Scholar 

  38. Petty RD, Nicolson MC, Kerr KM, Collie-Duguid E, Murray GI (2004) Gene expression profiling in non-small cell lung cancer: from molecular mechanisms to clinical application. Clin Cancer Res 10:3237–3248

    Article  CAS  Google Scholar 

  39. Borczuk AC, Shah L, Pearson GDN, Walter KL, Wang LQ et al (2004) Molecular signatures in biopsy specimens of lung cancer. Am J Respir Crit Care Med 170:167–174

    Article  Google Scholar 

  40. Diatchenko L, Lau YFC, Campbell AP, Chenchik A, Moqadam F et al (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. In: Proceedings of the national academy of sciences of the United States of America, vol 93, pp 6025–6030

    Google Scholar 

  41. Collisson EA, Campbell JD, Brooks AN, Berger AH, Lee W et al (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 513:543–550

    Article  Google Scholar 

  42. Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A et al (1999) Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 23:41–46

    Article  CAS  Google Scholar 

  43. Yildirim MA, Goh K-I, Cusick ME, Barabasi A-L, Vidal M (2007) Drug—target network. Nat Biotech 25:1119–1126

    Article  CAS  Google Scholar 

  44. Wu CC, Yates JR (2003) The application of mass spectrometry to membrane proteomics. Nat Biotech 21:262–267

    Article  CAS  Google Scholar 

  45. Kong R-M, Zhang X-B, Chen Z, Tan W (2011) Aptamer-assembled nanomaterials for biosensing and biomedical applications. Small 7:2428–2436

    CAS  Google Scholar 

  46. Sefah K, Phillips JA, Xiong X, Meng L, Simaeys DV et al (2009) Nucleic acid aptamers for biosensors and bio-analytical applications. The Anal 134:1765–1775

    Article  CAS  Google Scholar 

  47. Borbas KE, Ferreira CSM, Perkins A, Bruce JI, Missailidis S (2007) Design and synthesis of mono- and multimeric targeted radiopharmaceuticals based on novel cyclen ligands coupled to anti-MUC1 aptamers for the diagnostic imaging and targeted radiotherapy of cancer. Bioconjug Chem 18:1205–1212

    Article  CAS  Google Scholar 

  48. Cerchia L, Ducongé F, Pestourie C, Boulay J, Aissouni Y et al (2005) Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol 3:e123

    Article  Google Scholar 

  49. Shangguan D, Cao ZH, Meng L, Mallikaratchy P, Sefah K et al (2008) Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res 7:2133–2139

    Article  CAS  Google Scholar 

  50. Mallikaratchy P, Tang ZW, Kwame S, Meng L, Shangguan DH et al (2007) Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt’s lymphoma cells. Mol Cell Proteomics 6:2230–2238

    Article  CAS  Google Scholar 

  51. Van Simaeys D, Turek D, Champanhac C, Vaizer J, Sefah K et al (2014) Identification of cell membrane protein stress-induced phosphoprotein 1 as a potential ovarian cancer biomarker using aptamers selected by cell systematic evolution of ligands by exponential enrichment. Anal Chem 86:4521–4527

    Article  Google Scholar 

  52. Shangguan DH, Cao ZHC, Li Y, Tan WH (2007) Aptamers evolved from cultured cancer cells reveal molecular differences of cancer cells in patient samples. Clin Chem 53:1153–1155

    Article  CAS  Google Scholar 

  53. Ioannidis JPA (2007) Is molecular profiling ready for use in clinical decision making? Oncologist 12:301–311

    Article  Google Scholar 

  54. Leupin N, Kuhn A, Hügli B, Grob TJ, Jaggi R et al (2006) Gene expression profiling reveals consistent differences between clinical samples of human leukaemias and their model cell lines. Br J Haematol 135:520–523

    Article  CAS  Google Scholar 

  55. Yang M, Jiang G, Li W, Qiu K, Zhang M et al (2014) Developing aptamer probes for acute myelogenous leukemia detection and surface protein biomarker discovery. J Hematol Oncol 7(5). doi:10.1186/1756-8722-7-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwame Sefah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sefah, K., Phillips, J., Wu, C. (2015). Cell-Specific Aptamers for Disease Profiling and Cell Sorting. In: Tan, W., Fang, X. (eds) Aptamers Selected by Cell-SELEX for Theranostics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46226-3_9

Download citation

Publish with us

Policies and ethics