Skip to main content

White Organic Light-Emitting Diodes Based on Organometallic Phosphors

  • Chapter
Organometallics and Related Molecules for Energy Conversion

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 1389 Accesses

Abstract

Phosphorescent white organic light-emitting diodes (WOLEDs) employing organometallic phosphors as the emitters have attracted considerable attention in the past decade. Due to their capability of harvesting both singlet and triplet excitons to generate highly efficient devices, phosphorescent WOLEDs present potential applications in the next-generation solid-state lighting sources and in the flat-panel display with the assistance of the color filters. In this chapter, we attempt to give a brief overall introduction to the phosphorescent WOLEDs. The basic concepts, like electric-light conversion efficiency, parameters to assess the color quality of the emissive white light, device strategies to fabricate WOLEDs, and the common device fabrication procedures, are introduced firstly. These fundamental understandings are also favorable to comprehend the monochromatic OLEDs and the WOLEDs comprised of other emitters like fluorescent dyes. In particular, we focus on the discussion of phosphorescent WOLEDs with various device architectures and their corresponding device performances. We also note that further enhancement of the device lifetime with simultaneous realization of high efficiency and high quality of the emissive white light could make phosphorescent WOLEDs promising candidates for the alternative next-generation lighting sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51(12):913–915

    Article  Google Scholar 

  2. Kido J, Hongawa K, Okuyama K, Nagai K (1994) White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes. Appl Phys Lett 64(7):815–817

    Article  Google Scholar 

  3. D’Andrade BW, Holmes RJ, Forrest SR (2004) Efficient organic electrophosphorescent white-light-emitting device with a triple doped emissive layer. Adv Mater 16(7):624–628

    Article  Google Scholar 

  4. Gong SL, Chen YH, Luo JJ, Yang CL, Zhong C, Qin JG, Ma DG (2011) Bipolar tetraarylsilanes as universal hosts for blue, green, orange, and white electrophosphorescence with high efficiency and low efficiency roll-off. Adv Funct Mater 21(6):1168–1178

    Article  Google Scholar 

  5. Chien CH, Kung LR, Wu CH, Shu CF, Chang SY, Chi Y (2008) A solution-processable bipolar molecular glass as a host material for white electrophosphorescent devices. J Mater Chem 18(29):3461–3466

    Article  Google Scholar 

  6. Yook KS, Lee JY (2012) Solution processed multilayer deep blue and white phosphorescent organic light-emitting diodes using an alcohol soluble bipolar host and phosphorescent dopant materials. J Mater Chem 22(29):14546–14550

    Article  Google Scholar 

  7. Lin MS, Yang SJ, Chang HW, Huang YH, Tsai YT, Wu CC, Chou SH, Mondal E, Wong KT (2012) Incorporation of a CN group into mCP: a new bipolar host material for highly efficient blue and white electrophosphorescent devices. J Mater Chem 22(31):16114–16120

    Article  Google Scholar 

  8. Hou LD, Duan LA, Qiao JA, Zhang DQ, Wang LD, Cao Y, Qiu Y (2011) Efficient solution-processed phosphor-sensitized single-emitting-layer white organic light-emitting devices: fabrication, characteristics, and transient analysis of energy transfer. J Mater Chem 21(14):5312–5318

    Article  Google Scholar 

  9. Wang Q, Ding JQ, Ma DG, Cheng YX, Wang LX, Jing XB, Wang FS (2009) Harvesting excitons via two parallel channels for efficient white organic LEDs with nearly 100 % internal quantum efficiency: fabrication and emission-mechanism analysis. Adv Funct Mater 19(1):84–95

    Article  Google Scholar 

  10. Wu HB, Zou JH, Liu F, Wang L, Mikhailovsky A, Bazan GC, Yang W, Cao Y (2008) Efficient single active layer electrophosphorescent white polymer light-emitting diodes. Adv Mater 20(4):696–702

    Article  Google Scholar 

  11. Wu HB, Zou JH, Wu H, Lam CS, Wang CD, Zhu J, Zhong CM, Hu SJ, Ho CL, Zhou GJ, Choy WCH, Peng JB, Cao Y, Wong WY (2011) Simultaneous optimization of charge-carrier balance and luminous efficacy in highly efficient white polymer light-emitting devices. Adv Mater 23(26):2976–2980

    Article  Google Scholar 

  12. D’Andrade BW, Thompson ME, Forrest SR (2002) Controlling exciton diffusion in multilayer white phosphorescent organic light emitting devices. Adv Mater 14(2):147–151

    Article  Google Scholar 

  13. Su SJ, Gonmori E, Sasabe H, Kido J (2008) Highly efficient organic blue-and white-light-emitting devices having a carrier- and exciton-confining structure for reduced efficiency roll-off. Adv Mater 20(21):4189–4194

    Google Scholar 

  14. Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Luessem B, Leo K (2009) White organic light-emitting diodes with fluorescent tube efficiency. Nature 459(7244):234–239

    Article  Google Scholar 

  15. Yan BP, Cheung CCC, Kui SCF, Xiang HF, Roy VAL, Xu SJ, Che CM (2007) Efficient white organic light-emitting devices based on phosphorescent platinum (II)/fluorescent dual-emitting layers. Adv Mater 19(21):3599–3603

    Article  Google Scholar 

  16. Hung WY, Chi LC, Chen WJ, Chen YM, Chou SH, Wong KT (2010) A new benzimidazole/carbazole hybrid bipolar material for highly efficient deep-blue electrofluorescence, yellow-green electrophosphorescence, and two-color-based white OLEDs. J Mater Chem 20(45):10113–10119

    Article  Google Scholar 

  17. Peng T, Yang Y, Bi H, Liu Y, Hou ZM, Wang Y (2011) Highly efficient white organic electroluminescence device based on a phosphorescent orange material doped in a blue host emitter. J Mater Chem 21(11):3551–3553

    Article  Google Scholar 

  18. Ye J, Zheng CJ, Ou XM, Zhang XH, Fung MK, Lee CS (2012) Management of singlet and triplet excitons in a single emission layer: a simple approach for a high-efficiency fluorescence/phosphorescence hybrid white organic light-emitting device. Adv Mater 24(25):3410–3414

    Article  Google Scholar 

  19. Gong X, Ma WL, Ostrowski JC, Bazan GC, Moses D, Heeger AJ (2004) White electrophosphorescence from semiconducting polymer blends. Adv Mater 16(7):615–619

    Article  Google Scholar 

  20. Wu FI, Shih PI, Tseng YH, Shu CF, Tung YL, Chi Y (2007) Highly efficient white-electrophosphorescent devices based on polyfluorene copolymers containing charge-transporting pendent units. J Mater Chem 17(2):167–173

    Article  Google Scholar 

  21. Wu FI, Yang XH, Neher D, Dodda R, Tseng YH, Shu CF (2007) Efficient white-electrophosphorescent devices based on a single polyfluorene copolymer. Adv Funct Mater 17(7):1085–1092

    Article  Google Scholar 

  22. Zhang K, Chen Z, Yang CL, Tao YT, Zou Y, Qin JG, Cao Y (2008) Stable white electroluminescence from single fluorene-based copolymers: using fluorenone as the green fluorophore and an iridium complex as the red phosphor on the main chain. J Mater Chem 18(3):291–298

    Article  Google Scholar 

  23. Shao SY, Ding JQ, Wang LX, Jing XB, Wang FS (2012) White electroluminescence from all-phosphorescent single polymers on a fluorinated poly(arylene ether phosphine oxide) backbone simultaneously grafted with blue and yellow phosphors. J Am Chem Soc 134(50):20290–20293

    Article  Google Scholar 

  24. D’Andrade BW, Brooks J, Adamovich V, Thompson ME, Forrest SR (2002) White light emission using triplet excimers in electrophosphorescent organic light-emitting devices. Adv Mater 14(15):1032–1036

    Article  Google Scholar 

  25. Kalinowski J, Cocchi M, Virgili D, Tattori V, Williams JAG (2007) Mixing of excimer and exciplex emission: a new way to improve white light emitting organic electrophosphorescent diodes. Adv Mater 19(22):4000–4005

    Article  Google Scholar 

  26. Yang XH, Wang ZX, Madakuni S, Li J, Jabbour GE (2008) Efficient blue- and white-emitting electrophosphorescent devices based on platinum(II) [1,3-difluoro-4,6-di(2-pyridinyl)benzene] chloride. Adv Mater 20(12):2405–2409

    Article  Google Scholar 

  27. Murphy L, Brulatti P, Fattori V, Cocchi M, Williams JAG (2012) Blue-shifting the monomer and excimer phosphorescence of tridentate cyclometallated platinum(II) complexes for optimal white-light OLEDs. Chem Commun 48(47):5817–5819

    Article  Google Scholar 

  28. Su SJ, Cai C, Takamatsu J, Kido J (2012) A host material with a small singlet-triplet exchange energy for phosphorescent organic light-emitting diodes: guest, host, and exciplex emission. Org Electron 13(10):1937–1947

    Article  Google Scholar 

  29. Chen P, Xue Q, Xie W, Duan Y, Xie G, Zhao Y, Hou J, Liu S, Zhang L, Li B (2008) Color-stable and efficient stacked white organic light-emitting devices comprising blue fluorescent and orange phosphorescent emissive units. Appl Phys Lett 93(15):153508

    Article  Google Scholar 

  30. Chen P, Xue Q, Xie WF, Xie GH, Duan Y, Zhao Y, Liu SY, Zhang LY, Li B (2009) Influence of interlayer on the performance of stacked white organic light-emitting devices. Appl Phys Lett 95(12):123307

    Article  Google Scholar 

  31. Wang Q, Ding J, Zhang Z, Ma D, Cheng Y, Wang L, Wang F (2009) A high-performance tandem white organic light-emitting diode combining highly effective white-units and their interconnection layer. J Appl Phys 105(7):076101

    Article  Google Scholar 

  32. Chen Y, Chen J, Ma D, Yan D, Wang L (2011) Tandem white phosphorescent organic light-emitting diodes based on interface-modified C-60/pentacene organic heterojunction as charge generation layer. Appl Phys Lett 99(10):103304

    Article  Google Scholar 

  33. Wang Q, Chen Y, Chen J, Ma D (2012) White top-emitting organic light-emitting diodes employing tandem structure. Appl Phys Lett 101(13):133302

    Article  Google Scholar 

  34. Chen Y, Tian H, Chen J, Geng Y, Yan D, Wang L, Ma D (2012) Highly efficient tandem white organic light-emitting diodes based upon C-60/NaT4 organic heterojunction as charge generation layer. J Mater Chem 22(17):8492–8498

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Jian Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, D., Su, SJ. (2015). White Organic Light-Emitting Diodes Based on Organometallic Phosphors. In: Wong, WY. (eds) Organometallics and Related Molecules for Energy Conversion. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46054-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46054-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46053-5

  • Online ISBN: 978-3-662-46054-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics