Skip to main content

Part of the book series: Topics in Applied Physics ((TAP,volume 130))

Abstract

The organic solar cell technology has attracted great interests due to its potential of low cost solution process capability. Bulk heterojunction organic solar cells offer a potentially much cheaper alternative way to harness solar energy, and can be made flexible and large area. They can also be made translucent and in different colors. A broad range of distinct device technologies based on organic and organic/inorganic hybrid materials are being developed very rapidly, including polymer/fullerene blends, small molecule thin films and hybrid polymer/nanocrystal photovoltaic cells. As a result, the inexpensive fabrication process such as solution-process techniques, mechanical flexibility, light weight and visible-light transmissivity features make organic solar technology attractive for application in new markets such as smart sensors, power generating window panes, building architecture, greenhouses and outdoor lifestyle etc. The development of high performance semitransparent organic solar cells constitutes the next major step in this exciting and fast growing organic photovoltaic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Günes, H. Neugebauer, N.S. Sariciftci, Chem. Rev. 107, 1324 (2007)

    Article  Google Scholar 

  2. A.C. Arias, N. Corcoran, M. Banach, R.H. Friend, J.D. MacKenzie, W.T.S. Huck, Appl. Phys. Lett. 80, 1695 (2002)

    Article  Google Scholar 

  3. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Prog. Photovolt: Res. Appl. 20, 606 (2012)

    Article  Google Scholar 

  4. G. Dennler, M.C. Scharber, C.J. Brabec, Adv. Mater. 21, 1323 (2009)

    Article  Google Scholar 

  5. G. Li, V. Shrotriya, Y. Yao, Y. Yang, J. Appl. Phys. 98, 043704 (2005)

    Article  Google Scholar 

  6. G. Li, R. Zhu, Y. Yang, Nat. Photon. 6, 153 (2012)

    Article  Google Scholar 

  7. Y.-J. Cheng, S.-H. Yang, C.S. Hsu, Chem. Rev. 109, 5868 (2009)

    Article  Google Scholar 

  8. B.C. Thompson, J.M. Frechet, Angew. Chem. Int. Ed. 47, 58 (2008)

    Article  Google Scholar 

  9. J.S. Wilson, A.S. Dhoot, A.J.A.B. Seeley, M.S. Khan, A. Köhler, R.H. Friend, Nature 413, 828 (2001)

    Article  Google Scholar 

  10. W.Y. Wong, Dalton Trans. 4495 (2007)

    Google Scholar 

  11. W.Y. Wong, C.L. Ho, Coord. Chem. Rev. 250, 2627 (2006)

    Article  Google Scholar 

  12. A. Yakimov, S.R. Forrest, Appl. Phys. Lett. 80, 1667 (2002)

    Article  Google Scholar 

  13. J. Xue, S. Uchida, B.P. Rand, S.R. Forrest, Appl. Phys. Lett. 85, 5757 (2004)

    Article  Google Scholar 

  14. G. Dennler, H.J. Prall, R. Koeppe, M. Eggiger, R. Autengruber, N.S. Sariciftci, Appl. Phys. Lett. 89, 073502 (2006)

    Article  Google Scholar 

  15. F.R. Zhu, J. Singh, J. Non-Cryst. Solids 163, 65 (1993)

    Google Scholar 

  16. F.R. Zhu, J. Singh, Sol. Energy Mater. Sol. Cells 31, 119 (1993)

    Article  Google Scholar 

  17. F.R. Zhu, T. Fuyuki, H. Matsunami, J. Singh, Sol. Energy Mater. Sol. Cells 39, 1 (1995)

    Article  Google Scholar 

  18. F.R. Zhu, P. Jennings, J. Cornish, G. Hefter, K. Luczak, Sol. Energy Mater. Sol. Cells 49, 163 (1997)

    Article  Google Scholar 

  19. C. Tuchinda, S. Srivannaboon, H.W. Lim, J. Am. Acad. Dermatol. 54, 845 (2006)

    Article  Google Scholar 

  20. R.R. Lunt, V. Bulovic, Appl. Phys. Lett. 98, 113305 (2011)

    Article  Google Scholar 

  21. J. Meiss, K. Leo, M.K. Riede, C. Uhrich, W.-M. Gnehr, S. Sonntag, M. Pfeiffer, Appl. Phys. Lett. 95, 213306 (2009)

    Article  Google Scholar 

  22. G. Qian, Z.Y. Wang, Chem. Asian J. 5, 1006 (2010)

    Article  Google Scholar 

  23. K.Y. Lam, Chem. Rev. 93, 449 (1993)

    Article  Google Scholar 

  24. F. Silvestri, M.D. Irwin, L. Beverina, A. Facchetti, G.A. Pagani, T.J. Mark, J. Am. Chem. Soc. 130, 17640 (2008)

    Article  Google Scholar 

  25. P.F. Santos, L.V. Reis, P. Almeida, J.P. Serrano, A.S. Oliveira, L.F. Vieira Ferreira, J. Photochem. Photobiol., A 163, 267 (2004)

    Article  Google Scholar 

  26. B.P. Rand, J.G. Xue, F. Yang, S.R. Forrest, Appl. Phys. Lett. 87, 233508 (2005)

    Article  Google Scholar 

  27. A. Ajayaghosh, Chem. Soc. Rev. 32, 181 (2003)

    Article  Google Scholar 

  28. A. Gadisa, K. Tvingstedt, S. Admassie, L. Lindell, X. Crispin, M.R. Andersson, W.R. Salaneck, O. Inganäs, Synth. Met. 156, 1102 (2006)

    Article  Google Scholar 

  29. V. Shrotriya, E.H.E. Wu, G. Li, Y. Yao, Y. Yang, Appl. Phys. Lett. 88, 064104 (2006)

    Article  Google Scholar 

  30. A. Hadipour, B. de Boer, P.W.M. Blom, J. Appl. Phys. 102, 074506 (2007)

    Article  Google Scholar 

  31. S.L. Lai, M.Y. Chan, M.K. Fung, C.S. Lee, L.S. Hung, S.T. Lee, Chem. Phys. Lett. 366, 128 (2002)

    Article  Google Scholar 

  32. M.Y. Chan, S.L. Lai, M.K. Fung, S.W. Tong, C.S. Lee, S.T. Lee, Appl. Phys. Lett. 82, 1784 (2003)

    Article  Google Scholar 

  33. K.C. Lau, W.F. Xie, H.Y. Sun, C.S. Lee, S.T. Lee, Appl. Phys. Lett. 88, 083507 (2006)

    Article  Google Scholar 

  34. S.S. Li, K.H Tu, C.C. Lin, C.W. Chen. M, Chhowalla, ACS Nano, 4, 3169 (2010)

    Google Scholar 

  35. Y.Y. Lee, K.H. Tu, C.C. Yu, S.S. Li, .Y. Hwang, C.C. LinK.H. Chen, L.C Chen, H.L. Chen and C.W. Chen, ACS Nano, 5, 6564 (2011)

    Google Scholar 

  36. Z.K. Liu, J.H. Li, Z.H. Sun, G.A. Li, S.P. Lau, F. Yan, ACS Nano 6, 810 (2012)

    Article  Google Scholar 

  37. G.M. Ng, E.L. Kietzke, T. Kietzke, L.W. Tan, P.K. Liew, F.R. Zhu, Appl. Phys. Lett. 90, 103505 (2007)

    Article  Google Scholar 

  38. X.Z. Wang, G.M. Ng, J.W. Ho, H.L. Tam, F.R. Zhu, IEEE J. Sel. Top. Quantum Electron. 16, 1685 (2010)

    Article  Google Scholar 

  39. P. Peumans, A. Yakimov, S.R. Forrest, J. Appl. Phys. 93, 3693 (2003)

    Article  Google Scholar 

  40. P.F. Carcia, R.S. Mclean, M.H. Reilly, Z.G. Li, L.J. Pillione, R. F. Messier. J. Vac. Sci. Technol. A: Vac. Surf. Films, 21 745 (2003)

    Google Scholar 

  41. Y.R. Cui, X.H. Xu, Thin Solid Films 115, 195 (1984)

    Article  Google Scholar 

  42. C. Coutal, A. Azema, J.C. Roustan, Thin Solid Films 288, 248 (1996)

    Article  Google Scholar 

  43. H.J. Krokoszinski, R. Oesterlein, Thin Solid Films 187, 179 (1990)

    Article  Google Scholar 

  44. F.R. Zhu, C.H.A. Huan, K. Zhang, A.T.S. Wee, Thin Solid Films 359, 244 (2000)

    Article  Google Scholar 

  45. H. Morikawa, M. Fujita, Thin Solid Films 359, 61 (2000)

    Article  Google Scholar 

  46. D. Y. Lee, S. J. Lee, K. M. Song, H. K. Baik, J. Vac. Sci. Technol. A: Vac., Surf. Films, 21, 1069 (2003)

    Google Scholar 

  47. T. Morimune, H. Kajii, Y. Ohmori, Jpn. J. Appl. Phys. 44, 2815 (2005)

    Article  Google Scholar 

  48. A.J. Moulé, J.B. Bonekamp, K. Meerholz, J. Appl. Phys. 100, 094503 (2006)

    Article  Google Scholar 

  49. E. D. Palik, Handbook of Optical Constants of Solids, vol. I (1998), pp. 355–356, 688–690

    Google Scholar 

  50. P. Peumans, S.R. Forrest, Appl. Phys. Lett. 76, 3855 (2000)

    Article  Google Scholar 

  51. C.J. Yang, T.Y. Cho, C.L. Lin, C.C. Wu, Appl. Phys. Lett. 90, 173507 (2007)

    Article  Google Scholar 

  52. C.J. Yang, T.Y. Cho, Y.Y. Chen, C.J. Yang, C.Y. Meng, C.H. Yang, P.C. Yang, H.Y. Chang, C.Y. Hsueh, C.C. Wu, S.C. Lee, Appl. Phys. Lett. 90, 233512 (2007)

    Article  Google Scholar 

  53. J. Park, J. Lee, D. Shin, J. Display Technol. 6, 247 (2010)

    Article  Google Scholar 

  54. J.G. Xue, S.R. Forrest, Appl. Phys. Lett. 82, 136 (2003)

    Article  Google Scholar 

  55. Y. Ohmori, H. Kajii, M. Kaneko, K. Yoshino, M. Ozaki, A. Fujii, M. Hikita, H. Takenaka, T. Taneda, IEEE J. Select. Top. Quan. Electron. 10, 70 (2004)

    Article  Google Scholar 

  56. C. J. Yang, T. Y. Cho, C. L. Lin, C. C. Wu J. SID 16 691 (2008)

    Google Scholar 

  57. J.Y. Lee, S.T. Connor, Y. Cui, P. Peumans, Nano let. 10, 1276 (2010)

    Article  Google Scholar 

  58. X.Z. Wang, H.L. Tam, K.S. Yong, Z.K. Chen, F.R. Zhu, Org. Electron. 12, 1429 (2011)

    Article  Google Scholar 

  59. Y.Q. Li, L.W. Tan, X.T. Hao, K.S. Ong, F.R. Zhu, L.S. Hung, Appl. Phys. Lett. 86, 153508 (2005)

    Article  Google Scholar 

  60. T. Nakayama, Y. Itoh, A. Kakuta, Appl. Phys. Lett. 63, 594 (1993)

    Article  Google Scholar 

  61. N. Takada, T. Tsutsui, S. Saito, Appl. Phys. Lett. 639, 2032 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Rong Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhu, F.R. (2015). Semitransparent Organic Solar Cells. In: Yang, Y., Li, G. (eds) Progress in High-Efficient Solution Process Organic Photovoltaic Devices. Topics in Applied Physics, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45509-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45509-8_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45508-1

  • Online ISBN: 978-3-662-45509-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics