Skip to main content

Renal Tumors

  • Chapter
  • First Online:
Oncologic Imaging: Urology

Abstract

Malignant renal cell tumor (renal cell carcinoma: RCC) is the most common malignant renal tumor, and the most common benign renal tumor is angiomyolipoma (AML). Malignant renal mesenchymal tumor (sarcoma) is rare. Other renal tumors include oncocytoma, metanephric adenoma, mixed epithelial and stromal tumor, rare mesenchymal tumors such as leiomyoma or hemangioma, nephroblastoma, and neuroendocrine tumors. Lymphoma and metastasis should be differentiated from these primary renal tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim SH, Cho JY, Kim SY, et al. Ultrasound evaluation of renal masses: gray-scale, Doppler, and More. Ultrasound Clin. 2013;8:565–79.

    Article  Google Scholar 

  2. Israel GM, Silverman SG. The incidental renal mass. Radiol Clin North Am. 2011;49:369–83.

    Article  PubMed  Google Scholar 

  3. Frank I, Blute ML, Cheville JC, et al. Solid renal tumors: an analysis of pathological features related to tumor size. J Urol. 2003;170:2217–20.

    Article  PubMed  Google Scholar 

  4. Israel GM, Hindman N, Bosniak MA. Evaluation of cystic renal masses: comparison of CT and MR imaging by using the Bosniak classification system. Radiology. 2004;231:365–71.

    Article  PubMed  Google Scholar 

  5. Whelan TF. Guidelines on the management of renal cyst disease. Can Urol Assoc J. 2010;4:98–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Smith AD, Remer EM, Cox KL, et al. Bosniak category IIF and III cystic renal lesions: outcomes and associations. Radiology. 2012;262:152–60.

    Article  PubMed  Google Scholar 

  7. Sirli R, Sporea I, Popescu A, et al. Contrast enhanced ultrasound evaluation of the kidney. Med Ultrason. 2009;11:47–54.

    Google Scholar 

  8. Tama H, Takiguchi Y, Oka M, et al. Contrast-enhanced ultrasonography in the diagnosis of solid renal tumors. J Ultrasound Med. 2005;24:1635–40.

    Google Scholar 

  9. Ascenti G, Mazziotti S, Zimbaro G, et al. Complex cystic renal masses: characterization with contrast-enhanced US. Radiology. 2007;243:158–65.

    Article  PubMed  Google Scholar 

  10. Quai E, Bertolotto M, Cioff V, et al. Comparison of contrast-enhanced sonography with unenhanced sonography and contrast-enhanced CT in the diagnosis of malignancy in complex cystic renal masses. AJR Am J Roentgenol. 2008;191:1239–49.

    Article  Google Scholar 

  11. Pooler BD, Pickhardt PJ, O’Connor SD, et al. Renal cell carcinoma: attenuation values on unenhanced CT. AJR Am J Roentgenol. 2012;198:1115–20.

    Article  PubMed  Google Scholar 

  12. Duchene DA, Lotan Y, Cadeddu JA, et al. Histopathology of surgically managed renal tumors: analysis of a contemporary series. Urology. 2003;62:827–30.

    Article  PubMed  Google Scholar 

  13. Bae KT, Heiken JP, Siegel CL, et al. Renal cysts: is attenuation artifactually increased on contrast-enhanced CT images? Radiology. 2000;216:792–6.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang J, Lefkowitz RA, Ishill NM, et al. Solid renal cortical tumors: differentiation with CT. Radiology. 2007;244:494–504.

    Article  PubMed  Google Scholar 

  15. Alshumrani G, O’Malley M, Ghai S, et al. Small (< or = 4 cm) cortical renal tumors: characterization with multidetector CT. Abdom Imaging. 2010;35:488–93.

    Article  PubMed  Google Scholar 

  16. Israel GM, Hindman N, Hecht E, et al. The use of opposed-phase chemical shift MRI in the diagnosis of renal angiomyolipomas. AJR Am J Roentgenol. 2005;184:1868–72.

    Article  PubMed  Google Scholar 

  17. Hecht EM, Israel GM, Krinsky GA, et al. MR imaging of renal masses: comparison of quantitative enhancement using signal intensity measurements versus qualitative enhancement with image subtraction. Radiology. 2004;232:373–8.

    Article  PubMed  Google Scholar 

  18. Ho VB, Allen SF, Hood MN, et al. Renal masses: quantitative assessment of enhancement with dynamic MR imaging. Radiology. 2002;224:695–700.

    Article  PubMed  Google Scholar 

  19. Taouli B, Thakur RK, Mannelli L, et al. Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology. 2009;251:398–407.

    Article  PubMed  Google Scholar 

  20. Wang H, Cheng L, Zhang X, et al. Renal cell carcinoma: diffusion-weighted MR imaging for subtype differentiation at 3.0 T. Radiology. 2010;257:135–43.

    Article  PubMed  Google Scholar 

  21. Yu X, Lin M, Ouyang H, et al. Application of ADC measurement in characterization of renal cell carcinomas with different pathological types and grades by 3.0T diffusion-weighted MRI. Eur J Radiol. 2012;81:3061–6.

    Article  PubMed  Google Scholar 

  22. Kim GH, Jo MK, Cheon GJ, Lee HM. Clinical role of F-18 fluorodeoxyglucose positron emission tomography for follow-up patients with renal cell carcinoma. Korean J Urol. 2007;48:765–70.

    Article  Google Scholar 

  23. Figlin RA. Renal cell carcinoma: management of advanced disease. J Urol. 1999;161:381–6.

    Article  CAS  PubMed  Google Scholar 

  24. Kang DE, White RL, Zuger JH, et al. Clinical use of fluorodeoxyglucose F 18 positron emission tomography for detection of renal cell carcinoma. J Urol. 2004;171:1806–9.

    Article  PubMed  Google Scholar 

  25. Nakatani K, Nakamoto Y, Saga T, et al. The potential clinical value of FDG-PET for recurrent renal cell carcinoma. Eur J Radiol. 2011;79:29–35.

    Article  PubMed  Google Scholar 

  26. Volpe A, Patard JJ. Prognostic factors in renal cell carcinoma. World J Urol. 2010;28:319–27.

    Article  PubMed  Google Scholar 

  27. Ozülker T, Ozülker F, Ozbek E, et al. A prospective diagnostic accuracy study of F-18 fluorodeoxyglucose-positron emission tomography/computed tomography in the evaluation of indeterminate renal masses. Nucl Med Commun. 2011;32:265–72.

    Article  PubMed  Google Scholar 

  28. Hiles JJ, Kolesar JM. Role of sunitinib and sorafenib in the treatment of metastatic renal cell carcinoma. Am J Health Syst Pharm. 2008;65:123–31.

    Article  CAS  PubMed  Google Scholar 

  29. Khandani AH, Rathmell WK. Positron emission tomography in renal cell carcinoma: an imaging biomarker in development. Semin Nucl Med. 2012;42:221–30.

    Article  PubMed  Google Scholar 

  30. Revheim ME, Winge-Main AK, Hagen G, et al. Combined positron emission tomography/computed tomography in sunitinib therapy assessment of patients with metastatic renal cell carcinoma. Clin Oncol. 2011;23:339–43.

    Article  CAS  Google Scholar 

  31. Kayani I, Avril N, Bomanji J, et al. Sequential FDG-PET/CT as a biomarker of response to sunitinib in metastatic clear cell renal cancer. Clin Cancer Res. 2011;17:6021–8.

    Article  CAS  PubMed  Google Scholar 

  32. Kim EE, Lee MC, Inoue T, Wong WH, editors. Clinical PET and PET/CT: principles and applications. New York: Springer; 2013.

    Google Scholar 

  33. Liu G, Jeraj R, Vanderhoek M, et al. Pharmacodynamic study using FLT PET/CT in patients with renal cell cancer and other solid malignancies treated with sunitinib malate. Clin Cancer Res. 2011;17:7634–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hugonne F, Fournier L, Medioni J, et al; Hypoxia in Renal Cancer Multicenter Group. Metastatic renal cell carcinoma: relationship between initial metastasis hypoxia, change after 1 month’s sunitinib, and therapeutic response: an 18F-fluoromisonidazole PET/CT study. J Nucl Med. 2011;52:1048–55.

    Google Scholar 

  35. Menogue SR, O’Brien BA, Brown AL, et al. Percutaneous core biopsy of small renal mass lesions: a diagnostic tool to better stratify patients for surgical intervention. BJU Int. 2013;111:E146–51.

    Article  PubMed  Google Scholar 

  36. Eble JN, Sauter G, Epstein JI, et al., editors. World Health Organization classification of tumours: tumours of the urinary system and male genital organs. Lyon: IARC Press; 2004.

    Google Scholar 

  37. Gokden N, Nappi O, Swanson PE, et al. Renal cell carcinoma with rhabdoid features. Am J Surg Pathol. 2000;24(10):1329–38.

    Article  CAS  PubMed  Google Scholar 

  38. Kuroiwa K, Kinoshita Y, Shiratsuchi H, et al. Renal cell carcinoma with rhabdoid features: an aggressive neoplasm. Histopathology. 2002;41(6):538–48.

    Article  CAS  PubMed  Google Scholar 

  39. Lee C, Park JW, Suh JH, et al. Histologic variations and immunohistochemical features of metastatic clear cell renal cell carcinoma. Korean J Pathol. 2013;47(5):426–32.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Przybycin CG, McKenney JK, Reynolds JP, et al. Rhabdoid differentiation is associated with aggressive behavior in renal cell carcinoma: a clinicopathologic analysis of 76 cases with clinical follow-up. Am J Surg Pathol. 2014;38(9):1260–5.

    PubMed  Google Scholar 

  41. Kim H, Cho NH, Kim DS, et al. Renal cell carcinoma in South Korea: a multicenter study. Hum Pathol. 2004;35(12):1556–63.

    Article  PubMed  Google Scholar 

  42. Delahunt B. Sarcomatoid renal carcinoma: the final common dedifferentiation pathway of renal epithelial malignancies. Pathology. 1999;31(3):185–90.

    Article  CAS  PubMed  Google Scholar 

  43. Delahunt B, Eble JN, McCredie MR, et al. Morphologic typing of papillary renal cell carcinoma: comparison of growth kinetics and patient survival in 66 cases. Hum Pathol. 2001;32(6):590–5.

    Article  CAS  PubMed  Google Scholar 

  44. Delahunt B, Eble JN. Papillary renal cell carcinoma: a clinicopathologic and immunohistochemical study of 105 tumors. Mod Pathol Off J U S Can Acad Pathol Inc. 1997;10(6):537–44.

    CAS  Google Scholar 

  45. Altinok G, Kattar MM, Mohamed A, et al. Pediatric renal carcinoma associated with Xp11.2 translocations/TFE3 gene fusions and clinicopathologic associations. Pediatr Dev Pathol Off J Soc Pediatr Pathol Paediatric Pathol Soc. 2005;8(2):168–80.

    Article  CAS  Google Scholar 

  46. Argani P, Antonescu CR, Couturier J, et al. PRCC-TFE3 renal carcinomas: morphologic, immunohistochemical, ultrastructural, and molecular analysis of an entity associated with the t(X;1)(p11.2;q21). Am J Surg Pathol. 2002;26(12):1553–66.

    Article  PubMed  Google Scholar 

  47. Argani P, Antonescu CR, Illei PB, et al. Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Am J Pathol. 2001;159(1):179–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Argani P, Yonescu R, Morsberger L, et al. Molecular confirmation of t(6;11)(p21;q12) renal cell carcinoma in archival paraffin-embedded material using a break-apart TFEB FISH assay expands its clinicopathologic spectrum. Am J Surg Pathol. 2012;36(10):1516–26.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rao Q, Liu B, Cheng L, et al. Renal cell carcinomas with t(6;11)(p21;q12): a clinicopathologic study emphasizing unusual morphology, novel alpha-TFEB gene fusion point, immunobiomarkers, and ultrastructural features, as well as detection of the gene fusion by fluorescence in situ hybridization. Am J Surg Pathol. 2012;36(9):1327–38.

    Article  PubMed  Google Scholar 

  50. Smith NE, Illei PB, Allaf M, et al. t(6;11) renal cell carcinoma (RCC): expanded immunohistochemical profile emphasizing novel RCC markers and report of 10 new genetically confirmed cases. Am J Surg Pathol. 2014;38(5):604–14.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Argani P, Lal P, Hutchinson B, et al. Aberrant nuclear immunoreactivity for TFE3 in neoplasms with TFE3 gene fusions: a sensitive and specific immunohistochemical assay. Am J Surg Pathol. 2003;27(6):750–61.

    Article  PubMed  Google Scholar 

  52. Kim SH, Choi Y, Jeong HY, et al. Usefulness of a break-apart FISH assay in the diagnosis of Xp11.2 translocation renal cell carcinoma. Virchows Arch Int J Pathol. 2011;459(3):299–306.

    Article  CAS  Google Scholar 

  53. Rao Q, Williamson SR, Zhang S, et al. TFE3 break-apart FISH has a higher sensitivity for Xp11.2 translocation-associated renal cell carcinoma compared with TFE3 or cathepsin K immunohistochemical staining alone: expanding the morphologic spectrum. Am J Surg Pathol. 2013;37(6):804–15.

    Article  PubMed  Google Scholar 

  54. Lopez-Beltran A, Carrasco JC, Cheng L, et al. 2009 update on the classification of renal epithelial tumors in adults. Int J Urol Off J Jpn Urol Assoc. 2009;16(5):432–43.

    Google Scholar 

  55. Srigley JR, Delahunt B, Eble JN, et al. The International Society of Urological Pathology (ISUP) Vancouver classification of renal neoplasia. Am J Surg Pathol. 2013;37(10):1469–89.

    Article  PubMed  Google Scholar 

  56. Park JH, Lee C, Suh JH, et al. Clear cell papillary renal cell carcinoma: a report of 15 cases including three cases of concurrent other-type renal cell carcinomas. Korean J Pathol. 2012;46(6):541–7.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Eble JN, Sauter G, Epstein JI, et al. Pathology and genetics of tumours of the urinary system and male genital organs. Oxford: International Agency for Research on Cancer (IARC); 2004.

    Google Scholar 

  58. Fuhrman SA, Lasky LC, Limas C. Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol. 1982;6(7):655–63.

    Article  CAS  PubMed  Google Scholar 

  59. Kidney. In: Edge SB, Byrd DR, Compton CC, et al., eds.: AJCC Cancer Staging Manual. 7th ed. New York, NY: Springer, 2010, pp 479–89.

    Google Scholar 

  60. Hallscheidt PJ, Bock M, Riedasch G, et al. Diagnostic accuracy of staging renal cell carcinomas using multidetector-row computed tomography and magnetic resonance imaging: a prospective study with histopathologic correlation. J Comput Assist Tomogr. 2004;28:333–9.

    Article  PubMed  Google Scholar 

  61. Hallscheidt P, Wagener N, Gholipour F, et al. Multislice computed tomography in planning nephron-sparing surgery in a prospective study with 76 patients: comparison of radiological and histopathological findings in the infiltration of renal structures. J Comput Assist Tomogr. 2006;30:869–74.

    Article  PubMed  Google Scholar 

  62. Tsili AC, Argyropoulou MI, Gousia A, et al. Renal cell carcinoma: value of multiphase MDCT with multiplanar reformations in the detection of pseudocapsule. AJR Am J Roentgenol. 2012;199:379–86.

    Article  PubMed  Google Scholar 

  63. Ferda J, Hora M, Hes O, et al. Assessment of the kidney tumor vascular supply by two-phase MDCT-angiography. Eur J Radiol. 2007;62:295–301.

    Article  PubMed  Google Scholar 

  64. Kim JK, Kim TK, Ahn HJ, et al. Differentiation of subtypes of renal cell carcinoma on helical CT scans. AJR Am J Roentgenol. 2002;178:1499–506.

    Article  PubMed  Google Scholar 

  65. Prasad SR, Humphrey PA, Catena JR, et al. Common and uncommon histologic subtypes of renal cell carcinoma: imaging spectrum with pathologic correlation. Radiographics. 2006;26:1795–806.

    Article  PubMed  Google Scholar 

  66. Young JR, Margolis D, Sauk S, et al. Clear cell renal cell carcinoma: discrimination from other renal cell carcinoma subtypes and oncocytoma at multiphasic multidetector CT. Radiology. 2013;267:444–53.

    Article  PubMed  Google Scholar 

  67. Sun MR, Ngo L, Genega EM, et al. Renal cell carcinoma: dynamic contrast-enhanced MR imaging for differentiation of tumor subtypes-correlation with pathologic findings. Radiology. 2009;250:793–802.

    Article  PubMed  Google Scholar 

  68. Herts BR, Coll DM, Novick AC, et al. Enhancement characteristics of papillary renal neoplasms revealed on triphasic helical CT of the kidneys. AJR Am J Roentgenol. 2002;178:367–72.

    Article  PubMed  Google Scholar 

  69. Oliva MR, Glickman JN, Zou KH, et al. Renal cell carcinoma: T1 and T2 signal intensity characteristics of papillary and clear cell types correlated with pathology. AJR Am J Roentgenol. 2009;192:1524–30.

    Article  PubMed  Google Scholar 

  70. Cochand-Priollet B, Molinie V, Bougaran J, et al. Renal chromophobe cell carcinoma and oncocytoma: a comparative morphologic, histochemical, and immunohistochemical study of 124 cases. Arch Pathol Lab Med. 1997;121:1081–6.

    CAS  PubMed  Google Scholar 

  71. Rosenkrantz AB, Hindman N, Fitzgerald EF, et al. MRI features of renal oncocytoma and chromophobe renal cell carcinoma. AJR Am J Roentgenol. 2010;195:421–7.

    Article  Google Scholar 

  72. Hindman NM, Bosniak MA, Rosenkrantz AB, et al. Multilocular cystic renal cell carcinoma: comparison of imaging and pathologic findings. AJR Am J Roentgenol. 2012;198:20–6.

    Article  Google Scholar 

  73. Pickhardt PJ, Siegel CL, McLarney JK. Collecting duct carcinoma of the kidney: are imaging findings suggestive of the diagnosis? AJR Am J Roentgenol. 2001;176:627–33.

    Article  CAS  PubMed  Google Scholar 

  74. Taneja R, Bhargava P, Cuevas C, et al. Common and less-common renal masses and masslike conditions. Radiol Clin North Am. 2012;50:245–57.

    Article  PubMed  Google Scholar 

  75. Kato H, Kanematsu M, Yokoi S, et al. Renal cell carcinoma associated with Xp11.2 translocation/TFE3 gene fusion: radiological findings mimicking papillary subtype. J Magn Reson Imaging. 2011;33:217–20.

    Article  PubMed  Google Scholar 

  76. Mester JL, Zhou M, Prescott N, et al. Papillary renal cell carcinoma is associated with PTEN hamartoma tumor syndrome. Urology. 2012;79:1187.e1–7.

    Article  Google Scholar 

  77. Abrahams NA, Tamboli P. Oncocytic renal neoplasms: diagnostic considerations. Clin Lab Med. 2005;25:317–39.

    Article  PubMed  Google Scholar 

  78. Kim JI, Cho JY, Moon KC, et al. Segmental enhancement inversion at biphasic Multidetector CT: characteristic finding of small renal oncocytoma. Radiology. 2009;252:441–8.

    Article  PubMed  Google Scholar 

  79. McGahan JP, Lamba R, Fisher J, et al. Is segmental enhancement inversion on enhanced biphasic MDCT a reliable sign for the noninvasive diagnosis of renal oncocytomas? AJR Am J Roentgenol. 2011;197:W674–9.

    Article  PubMed  Google Scholar 

  80. O’Malley ME, Tran P, Hanbidge A, et al. Small renal oncocytomas: is segmental enhancement inversion a characteristic finding at biphasic MDCT? AJR Am J Roentgenol. 2012;199:1312–5.

    Article  PubMed  Google Scholar 

  81. Woo S, Cho JY, Kim SH, et al. Segmental enhancement inversion of small renal oncocytoma: differences in prevalence according to tumor size. AJR Am J Roentgenol. 2013;200:1054–9.

    Article  PubMed  Google Scholar 

  82. Woo S, Cho JY, Kim SH, et al. Comparison of segmental enhancement inversion on biphasic MDCT between small renal oncocytomas and chromophobe renal cell carcinomas. AJR Am J Roentgenol. 2013;201:598–604.

    Article  PubMed  Google Scholar 

  83. Bastide C, Rambeaud JJ, Bach AM, et al. Metanephric adenoma of the kidney: clinical and radiological study of nine cases. BJU Int. 2009;103:1544–8.

    Article  PubMed  Google Scholar 

  84. Torricelli FC, Marchini GS, Campos RS, et al. Metanephric adenoma: clinical, imaging, and histological findings. Clinics (Sao Paulo). 2011;66:359–61.

    Article  Google Scholar 

  85. Samaratunga H, Delahunt B. Mesenchymal tumors of adult kidney. Semin Diagn Pathol. 2015;32:160–71.

    Article  PubMed  Google Scholar 

  86. Weeks DA, Beckwith JB, Mierau GW, et al. Rhabdoid tumor of kidney. A report of 111 cases from the National Wilms’ Tumor Study Pathology Center. Am J Surg Pathol. 1989;13(6):439–58.

    Article  CAS  PubMed  Google Scholar 

  87. Hollmann TJ, Hornick JL. INI1-deficient tumors: diagnostic features and molecular genetics. Am J Surg Pathol. 2011;35(10):e47–63.

    Article  PubMed  Google Scholar 

  88. Kim SH, Sim JS. Malignant renal parenchymal tumors. In Kim SH (ed): Radiology illustrated: uroradiology. 2nd ed. Heidelberg New York Dordrecht London: Springer; 2012. p. 145–251.

    Google Scholar 

  89. Davenport MS, Neville AM, Ellis JH, et al. Diagnosis of renal angiomyolipoma with hounsfield unit thresholds: effect of size of region of interest and nephrographic phase imaging. Radiology. 2011;260:158–65.

    Article  PubMed  Google Scholar 

  90. Simpson E, Patel U. Diagnosis of angiomyolipoma using computed tomography-region of interest < or = −10 HU or 4 adjacent pixels < or = −10 HU are recommended as the diagnostic thresholds. Clin Radiol. 2006;61:410–6.

    Article  CAS  PubMed  Google Scholar 

  91. Catalano OA, Samir AE, Sahani DV, et al. Pixel distribution analysis: can it be used to distinguish clear cell carcinomas from angiomyolipomas with minimal fat? Radiology. 2008;247:738–46.

    Article  PubMed  Google Scholar 

  92. Hafron J, Fogarty JD, Hoenig DM, et al. Imaging characteristics of minimal fat renal angiomyolipoma with histologic correlations. Urology. 2005;66:1155–9.

    Article  PubMed  Google Scholar 

  93. Kim JK, Park SY, Shon JH, et al. Angiomyolipoma with minimal fat: differentiation from renal cell carcinoma at biphasic helical CT. Radiology. 2004;230:677–84.

    Article  PubMed  Google Scholar 

  94. Kim JK, Kim SH, Jang YJ, et al. Renal angiomyolipoma with minimal fat: differentiation from other neoplasms at double-echo chemical shift FLASH MR imaging. Radiology. 2006;239:174–80.

    Article  PubMed  Google Scholar 

  95. Cui L, Hu XY, Gong SC, et al. A massive renal epithelioid angiomyolipoma with multiple metastatic lymph nodes. Clin Imaging. 2011;35:320–3.

    Article  PubMed  Google Scholar 

  96. Eble JN, Amin MB, Young RH. Epithelioid angiomyolipoma of the kidney: a report of five cases with a prominent and diagnostically confusing epithelioid smooth muscle component. Am J Surg Pathol. 1997;21(10):1123–30.

    Article  CAS  PubMed  Google Scholar 

  97. Tsukada J, Jinzaki M, Yao M, et al. Epithelioid angiomyolipoma of the kidney: radiological imaging. Int J Urol. 2013;20:1105–11.

    Article  PubMed  Google Scholar 

  98. Froemming AT, Boland J, Cheville J, Kawashima A, et al. Renal epithelioid angiomyolipoma: imaging characteristics in nine cases with radiologic-pathologic correlation and review of the literature. AJR Am J Roentgenol. 2013;200:W178–86.

    Article  PubMed  Google Scholar 

  99. Geenen RW, Den Bakker MA, et al. Sonography, CT, and MRI of giant cavernous hemangioma of the kidney: correlation with pathologic findings. AJR Am J Roentgenol. 2004;182:411–4.

    Article  PubMed  Google Scholar 

  100. Wang JH, Sheu MH, Lee RC. MR findings of renin-secreting tumor: a case report. Abdom Imaging. 1998;23:533–5.

    Article  CAS  PubMed  Google Scholar 

  101. Hwang SI, Sim JS. Benign renal tumors. In: Kim SH, editor. Radiology illustrated: uroradiology. 2nd ed. Heidelberg/New York/Dordrecht/London: Springer; 2012. p. 103–44.

    Google Scholar 

  102. Znati K, Chbani L, El Fatemi H, et al. Solitary fibrous tumor of the kidney: a case report and review of the literature. Rev Urol. 2007;9:36–40.

    PubMed  PubMed Central  Google Scholar 

  103. Johnson TR, Pedrosa I, Goldsmith J, et al. Magnetic resonance imaging findings in solitary fibrous tumor of the kidney. J Comput Assist Tomogr. 2005;29:481–3.

    Article  PubMed  Google Scholar 

  104. Chu LC, Hruban RH, Horton KM, et al. Mixed epithelial and stromal tumor of the kidney: radiologic-pathologic correlation. Radiographics. 2010;30:1541–51.

    Article  PubMed  Google Scholar 

  105. Jimenez RE, Folpe AL, Lapham RL, et al. Primary Ewing’s sarcoma/primitive neuroectodermal tumor of the kidney: a clinicopathologic and immunohistochemical analysis of 11 cases. Am J Surg Pathol. 2002;26(3):320–7.

    Article  PubMed  Google Scholar 

  106. Thyavihally YB, Tongaonkar HB, Gupta S, et al. Primitive neuroectodermal tumor of the kidney: a single institute series of 16 patients. Urology. 2008;71(2):292–6.

    Article  PubMed  Google Scholar 

  107. Lee H, Cho JY, Kim SH, et al. Imaging findings of primitive neuroectodermal tumors of the kidney. J Comput Assist Tomogr. 2009;33:882–6.

    Article  PubMed  Google Scholar 

  108. Ferry JA, Harris NL, Papanicolaou N, et al. Lymphoma of the kidney. A report of 11 cases. Am J Surg Pathol. 1995;19(2):134–44.

    Article  CAS  PubMed  Google Scholar 

  109. Urban BA, Fishman EK. Renal lymphoma: CT patterns with emphasis on helical CT. Radiographics. 2000;20:197–212.

    Article  CAS  PubMed  Google Scholar 

  110. Sheth S, Ali S, Fishman E. Imaging of renal lymphoma: patterns of disease with pathologic correlation. Radiographics. 2006;26:1151–68.

    Article  PubMed  Google Scholar 

  111. Bracken RB, Chica G, Johnson DE, et al. Secondary renal neoplasms: an autopsy study. South Med J. 1979;72(7):806–7.

    Article  CAS  PubMed  Google Scholar 

  112. Choyke PL, White EM, Zeman RK, et al. Renal metastases: clinicopathologic and radiologic correlation. Radiology. 1987;162:359–63.

    Article  CAS  PubMed  Google Scholar 

  113. Chawla SN, Crispen PL, Hanlon AL, et al. The natural history of observed enhancing renal masses: meta-analysis and review of the world literature. J Urol. 2006;175:425–31.

    Article  PubMed  Google Scholar 

  114. Jewett MA, Mattar K, Basiuk J, et al. Active surveillance of small renal masses: progression patterns of early stage kidney cancer. Eur Urol. 2011;60:39–44.

    Article  PubMed  Google Scholar 

  115. Mucksavage P, Ramchandani P, Malkowicz SB, et al. Is ultrasound imaging inferior to computed tomography or magnetic resonance imaging in evaluating renal mass size? Urology. 2012;79:28–31.

    Article  PubMed  Google Scholar 

  116. Psutka SP, Feldman AS, McDougal WS, McGovern FJ, Mueller P, Gervais DA. Long-term oncologic outcomes after radiofrequency ablation for T1 renal cell carcinoma. Eur Urol. 2013;63(3):486–92.

    Article  PubMed  Google Scholar 

  117. Silverman SG, Israel GM, Herts BR, Richie JP. Management of the incidental renal mass. Radiology. 2008;249(1):16–31.

    Article  PubMed  Google Scholar 

  118. Park BK, Kim CK. Complications of image-guided radiofrequency ablation of renal cell carcinoma: causes, imaging features and prevention methods. Eur Radiol. 2009;19(9):2180–90.

    Article  PubMed  Google Scholar 

  119. Park SY, Park BK, Kim CK. Thermal ablation in renal cell carcinoma: what affects renal function? Int J Hyperthermia. 2012;28(8):729–34.

    Article  PubMed  Google Scholar 

  120. Sung HH, Park BK, Kim CK, Choi HY, Lee HM. Comparison of percutaneous radiofrequency ablation and open partial nephrectomy for the treatment of size- and location-matched renal masses. Int J Hyperthermia. 2012;28(3):227–34.

    Article  PubMed  Google Scholar 

  121. Zagoria RJ, Pettus JA, Rogers M, Werle DM, Childs D, Leyendecker JR. Long-term outcomes after percutaneous radiofrequency ablation for renal cell carcinoma. Urology. 2011;77(6):1393–7.

    Article  PubMed  Google Scholar 

  122. Schmit GD, Thompson RH, Kurup AN, et al. Percutaneous cryoablation of solitary sporadic renal cell carcinomas. BJU Int. 2012;110(11 Pt B):E526–31.

    Article  PubMed  Google Scholar 

  123. Robson CJ. Radical nephrectomy for renal cell carcinoma. J Urol. 1963;89:37–42.

    CAS  PubMed  Google Scholar 

  124. O’Malley RL, Godoy G, Kanofsky JA, Taneja SS. The necessity of adrenalectomy at the time of radical nephrectomy: a systematic review. J Urol. 2009;181:2009–17.

    Article  PubMed  Google Scholar 

  125. Tsui KH, Shvarts O, Barbaric Z, Figlin R, De Kernion JB, Belldegrun A. Is adrenalectomy a necessary component of radical nephrectomy? UCLA experience with 511 radical nephrectomies. J Urol. 2000;163:437–41.

    Article  CAS  PubMed  Google Scholar 

  126. Blom JH, Van Poppel H, Marechal JM, Jacqmin JA, Schroder FH, De Prijck L, Sylvester R, Group EGTC. Radical nephrectomy with and without lymph-node dissection: final results of European Organization for Research and Treatment of Cancer (EORTC) randomized phase 3 trial 30881. Eur Urol. 2009;55:28–34.

    Article  PubMed  Google Scholar 

  127. Shuford MD, McDougall EM, Chang SS, Lafleur BJ, Smith Jr JA, Cookson MS. Complications of contemporary radical nephrectomy: comparison of open vs. laparoscopic approach. Urol Oncol. 2004;22:121–6.

    Article  PubMed  Google Scholar 

  128. Dunn MD, Portis AJ, Shalhav AL, Elbahnasy AM, Heidorn C, McDougall EM, Clayman RV. Laparoscopic versus open radical nephrectomy: a 9-year experience. J Urol. 2000;164:1153–9.

    Article  CAS  PubMed  Google Scholar 

  129. Clayman RV, Kavoussi LR, Soper NJ, Dierks SM, Meretyk S, Darcy MD, Roemer FD, Pingleton ED, Thomson PG, Long SR. Laparoscopic nephrectomy: initial case report. J Urol. 1991;146:278–82.

    CAS  PubMed  Google Scholar 

  130. Maclennan S, Imamura M, Lapitan MC, Omar MI, Lam TB, Hilvano-Cabungcal AM, Royle P, Stewart F, Maclennan G, Maclennan SJ, Dahm P, Canfield SE, Mcclinton S, Griffiths TR, Ljungberg B, N’Dow J, Group USRR, Panel EAURCG. Systematic review of perioperative and quality-of-life outcomes following surgical management of localised renal cancer. Eur Urol. 2012;62:1097–117.

    Article  PubMed  Google Scholar 

  131. Maclennan S, Imamura M, Lapitan MC, Omar MI, Lam TB, Hilvano-Cabungcal AM, Royle P, Stewart F, Maclennan G, Maclennan SJ, Canfield SE, Mcclinton S, Griffiths TR, Ljungberg B, N’Dow J, Group USRR, Panel EAURCG. Systematic review of oncological outcomes following surgical management of localised renal cancer. Eur Urol. 2012;61:972–93.

    Article  PubMed  Google Scholar 

  132. Fergany A. Chronic renal insufficiency after partial nephrectomy for T1b tumors. Curr Opin Urol. 2013;23:394–8.

    Article  PubMed  Google Scholar 

  133. Huang WC, Levey AS, Serio AM, Snyder M, Vickers AJ, Raj GV. Scardin ions of contemporary laparoscopic partial nephrectomy: use of a standardized reporting system. J Urol. 2007;177:2067–73.

    Article  Google Scholar 

  134. Go AS, Chertow GM, Fan D, Mcculloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.

    Article  CAS  PubMed  Google Scholar 

  135. Thompson RH, Boorjian SA, Lohse CM, Leibovich BC, Kwon ED, Cheville JC, Blute ML. Radical nephrectomy for pT1a renal masses may be associated with decreased overall survival compared with partial nephrectomy. J Urol. 2008;179:468–73.

    Article  PubMed  Google Scholar 

  136. Ramani AP, Desai MM, Steinberg AP, Ng CS, Abreu SC, Kaouk JH, Finelli A, Novick AC, Gill IS. Complications of laparoscopic partial nephrectomy in 200 cases. J Urol. 2005;173:42–7.

    Article  PubMed  Google Scholar 

  137. Becker A, Ravi P, Roghmann F, Trinh QD, Tian Z, Larouche A, Kim S, Shariat SF, Kluth L, Dahlem R, Fisch M, Graefen M, Eichelberg C, Karakiewicz PI, Sun M. Laparoscopic radical nephrectomy vs laparoscopic or open partial nephrectomy for T1 renal cell carcinoma: comparison of complication rates in elderly patients during the initial phase of adoption. Urology. 2014;83:1285–91.

    Article  PubMed  Google Scholar 

  138. Simmons MN, Gill IS, Hafron J, Fogarty JD, Hoenig DM, et al. Decreased complicat92. Imaging characteristics of minimal fat renal angiomyolipoma with histologic correlations. Urology. 2005;66:1155–9.

    Google Scholar 

  139. Lee S, Oh J, Hong SK, Lee SE, Byun SS. Open versus robot-assisted partial nephrectomy: effect on clinical outcome. J Endourol. 2011;25:1181–5.

    Article  PubMed  Google Scholar 

  140. Howlader N, Noone A, Krapcho M, et al. SEER Cancer statistics review, 1975–2010. Bethesda: National Cancer Institute; 2013.

    Google Scholar 

  141. Yagoda A, Abi-Rached B, Petrylak D, et al. Chemotherapy for advanced renal-cell carcinoma: 1983–1993. Semin Oncol. 1995;22:42–60.

    CAS  PubMed  Google Scholar 

  142. Cohen HT, McGovern FJ. Renal-cell carcinoma. N Engl J Med. 2005;353:2477–90.

    Article  CAS  PubMed  Google Scholar 

  143. Mancuso A, Sternberg CN. New treatment approaches in metastatic renal cell carcinoma. Curr Opin Urol. 2006;16:337–41.

    Article  PubMed  Google Scholar 

  144. Escudier B, Eisen T, Stadler WM, Szczylik C, et al. TARGET Study Group. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356:125–34.

    Article  CAS  PubMed  Google Scholar 

  145. Product information. Sutent (sunitinib). New York: Pfizer, Inc; 2008.

    Google Scholar 

  146. Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356:115–24.

    Article  CAS  PubMed  Google Scholar 

  147. Figlin R, Hutson TE, Tomczak P, et al. Overall survival with sunitinib versus interferon (IFN)-alfa as first-line treatment of metastatic renal cell carcinoma (mRCC). J Clin Oncol. 2008;26(Suppl 18)(abstract 5024).

    Google Scholar 

  148. Motzer RJ, Hutson TE, Cella D, et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med. 2013;369:722–31.

    Article  CAS  PubMed  Google Scholar 

  149. Rini BI. SU11248 and AG013736: current data and future trials in renal cell carcinoma. Clin Genitourin Cancer. 2005;4:175–80.

    Article  CAS  PubMed  Google Scholar 

  150. Rini BI, Escudier B, Tomczak P, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomized phase 3 trial. Lancet. 2011;380:1818.

    Google Scholar 

  151. Product information. Torisel (temsirolimus). Philadelphia: Wyeth Pharmaceuticals Inc; 2007.

    Google Scholar 

  152. Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356:2271–81.

    Article  CAS  PubMed  Google Scholar 

  153. Fisher R, Gore M, Larkin J. Current and future systemic treatments for renal cell carcinoma. Semin Cancer Biol. 2013;23:38–45.

    Article  PubMed  Google Scholar 

  154. Escudier B, Pluzanska A, Koralewski P, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet. 2007;370:2103–11.

    Article  PubMed  Google Scholar 

  155. Rini BI, Halabi S, Rosenberg JE, et al. Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J Clin Oncol. 2008;26:5422–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Reeves DJ, Liu CY. Treatment of metastatic renal cell carcinoma. Cancer Chemother Pharmacol. 2009;64:11–25.

    Article  CAS  PubMed  Google Scholar 

  157. Ravaud A, Barrios CH, Alekseev B, et al. RECORD-2: phase II randomized study of everolimus and bevacizumab versus interferon α-2a and bevacizumab as first-line therapy in patients with metastatic renal cell carcinoma. Ann Oncol. 2015;26:1378–84.

    Article  CAS  PubMed  Google Scholar 

  158. Rini BI, Bellmunt J, Clancy J, et al. Randomized phase III trial of temsirolimus and bevacizumab versus interferon alfa and bevacizumab in metastatic renal cell carcinoma: INTORACT trial. J Clin Oncol. 2014;32:752–9.

    Article  CAS  PubMed  Google Scholar 

  159. Juusela H, Malmio K, Alfthan O, Oravisto KJ. Preoperative irradiation in the treatment of renal adenocarcinoma. Scand J Urol Nephrol. 1977;11(3):277–81.

    Article  CAS  PubMed  Google Scholar 

  160. Kjaer M, Frederiksen PL, Engelholm S. Postoperative radiotherapy in stage II and III renal adenocarcinoma. A randomized trial by the Copenhagen Renal Cancer Study Group. Int J Radiat Oncol Biol Phys. 1987;13(5):665–72.

    Article  CAS  PubMed  Google Scholar 

  161. Svedman C, Karlsson K, Rutkowska E, et al. Stereotactic body radiotherapy of primary and metastatic renal lesions for patients with only one functioning kidney. Acta Oncol. 2008;47(8):1578–83.

    Article  CAS  PubMed  Google Scholar 

  162. Svedman C, Sandström P, Pisa P, et al. A prospective phase II trial of using extracranial stereotactic radiotherapy in primary and metastatic renal cell carcinoma. Acta Oncol. 2006;45(7):870–5.

    Article  PubMed  Google Scholar 

  163. Van der Werf-Messing B. Carcinoma of the kidney. Cancer. 1973;32(5):1056–61.

    Article  PubMed  Google Scholar 

  164. Wersäll PJ, Blomgren H, Lax I, et al. Extracranial stereotactic radiotherapy for primary and metastatic renal cell carcinoma. Radiother Oncol. 2005;77(1):88–95.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sun Ho Kim or Seung Hyup Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, S.H. et al. (2017). Renal Tumors. In: Kim, S., Cho, J. (eds) Oncologic Imaging: Urology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45218-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45218-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45217-2

  • Online ISBN: 978-3-662-45218-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics