Skip to main content

Development of Marine Antifouling Coatings

  • Chapter
  • First Online:
Antifouling Surfaces and Materials

Abstract

Antifouling coatings for underwater hulls are a very important topic in coating research. Effective hull coatings determine the performance factors including speed, fuel consumption, and weight of a vessel. Controlling fouling using an antifouling paint containing biocides is the most common way of keeping hulls as efficient as possible; however, restrictions on the use of biocide-releasing coatings have made the generation of nontoxic antifouling surfaces more important. This chapter specifically focuses on recent developments in antifouling coatings and summarizes the main types of antifouling products used through history up to the present time. Consideration is also briefly made of the main basic mechanisms by which different types of antifouling paints work. Finally, a number of current researches on antifouling technologies are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haras D (2006) Biofilms et altérations des matériaux: de l’analyse du phénomène aux stratégies de prevention. Mater Tech 93:27–41

    Google Scholar 

  2. Roberts D, Rittschof D, Holm E et al (1991) Factors influencing initial larval settlement: temporal, spatial and surface molecular components. J Exper Mar Biol Ecol 150(2):203–221

    Article  Google Scholar 

  3. Schultz M, Bendick J, Holm E et al (2011) Economic impact of biofouling on a naval surface ship. Biofouling 27(1):87–98

    Article  Google Scholar 

  4. Callow ME, Callow JA (2002) Marine biofouling: a sticky problem. Biologist 49(1):10–14

    Google Scholar 

  5. Piola RF, Dafforn KA, Johnston EL (2009) The influence of antifouling practices on marine invasions. Biofouling 25(7):633–644

    Article  Google Scholar 

  6. Callow M (1990) Ship fouling: problems and solutions. Chem Ind 5:123–127

    Google Scholar 

  7. Evans S, Birchenough A, Brancato M (2000) The TBT ban: out of the prying pan into the fire?. Marine Poll Bull 40(3):204–211

    Article  Google Scholar 

  8. Milne A, Hails G (1976) International paint. GB Patent 1,457,590

    Google Scholar 

  9. Rouhi AM (1998) The squeeze on tributyltins. Chem Eng News 76(17):41–42

    Article  Google Scholar 

  10. Pereira M, Ankjaergaard C (2009) Legislation affecting antifouling products. In: Hellio C, Yebra D (eds) Advances in marine antifouling coatings and technologies. Woodshead Publishing, Cambridge, pp 240–259

    Chapter  Google Scholar 

  11. Ytreberg E, Karlsson J, Eklund B (2010) Comparison of toxicity and release rates of Cu and Zn from anti-fouling paints leached in natural and artificial brackish seawater. Sci. Total Environ 408(12):2459–2466

    Article  Google Scholar 

  12. Callow JA, Callow ME (2011) Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun 2:244 doi:10.1038/ncomms1251

    Article  Google Scholar 

  13. Lejars M, Margaillan A, Bressy C (2012) Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem Rev 112(8):4347–4390

    Article  Google Scholar 

  14. Yebra D, Kiil S, Dam-Johansen K (2004) Antifouling technology–past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50(2):75–104

    Article  Google Scholar 

  15. Hellio C, Yebra D (2009) Advances in marine antifouling coatings and technologies. Woodshead Publishing, Cambridge, pp 1–15

    Book  Google Scholar 

  16. Clare AS (1996) Marine natural product antifoulants: status and potential. Biofouling 9(3):211–229

    Article  Google Scholar 

  17. Clare AS (1998) Towards nontoxic antifouling. J Mar Biotechnol 6(1):3–6

    Google Scholar 

  18. Rittschof D (2000) Natural product antifoulants: one perspective on the challenges related to coatings developments. Biofouling 15(1–3):119–127

    Article  Google Scholar 

  19. Marson F (1969) Anti-fouling paints. I. Theoretical approach to leaching of soluble pigments from insoluble paint vehicles. J Appl Chem 19(4):93–99

    Article  Google Scholar 

  20. del Amo B, Giúdice CA, Rascio VJD (1984) Influence of binder dissolution rate on the bioactivity antifouling paints. J Coat Technol 56(719):63–69

    Google Scholar 

  21. Almeida E, Diamantino TC, de Sousa O (2007) Marine paints: the particular case of antifouling paints. Prog Org Coat 59(1):2–20

    Article  Google Scholar 

  22. Omae I (2003) General aspects of tin-free antifouling paints. Chem Rev 103(9):3431–3448

    Article  Google Scholar 

  23. Gitlitz MH (1981) Recent developments in marine antifouling coatings. J Coat Technol 53(678):46–52

    Google Scholar 

  24. Schultz MP, Kavanagh CJ, Swain GW (1999) Hydrodynamic forces on barnacles: implications on detachment from fouling-release surfaces. Biofouling 13(4):323–335

    Article  Google Scholar 

  25. Terlizzi A, Conte E, Zupo V et al (2000) Biological succession on silicone fouling release surfaces: long term exposure tests in the harbour of Ischia, Italy. Biofouling 15(4):327–342

    Article  Google Scholar 

  26. Brady R (2001) A fracture mechanical analysis of fouling release from nontoxic antifouling coatings. Prog Org Coat 43(1–3):188–192

    Article  Google Scholar 

  27. Bennett S, Finlay J, Gunari N et al (2010) The role of surface energy and water wettability in aminoalkyl/fluorocarbon/hydrocarbon-modified xerogel surfaces in the control of marine biofouling. Biofouling 26(2):235–246

    Article  Google Scholar 

  28. Brady R, Singer I (2000) Mechanical factors favoring release from fouling release coatings. Biofouling 15(1–3):73–81

    Article  Google Scholar 

  29. Weinman C, Finlay J, Park D et al (2009) ABC triblock surface active block copolymer with grafted ethoxylated fluoroalkyl amphiphilic side chains for marine antifouling/fouling-release applications. Langmuir 25(20):12266–12274

    Article  Google Scholar 

  30. Tasso M, Pettitt M, Cordeiro A et al (2009) Antifouling potential of Subtilisin A immobilized onto maleic anhydride copolymer thin films. Biofouling 25(6):505–516

    Article  Google Scholar 

  31. Leroy C, Delbarre-Ladrat C, Ghillebaert F et al (2008) Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling 24(1):11–22

    Article  Google Scholar 

  32. Schumacher J, Carman M, Estes T et al (2007) Engineered antifouling microtopographies—effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva. Biofouling 23(1):55–62

    Article  Google Scholar 

  33. Banerjee I, Pangule R, Kane R (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23(6):690–718

    Article  Google Scholar 

  34. Efimenko K, Finlay J, Callow M et al (2009) Development and testing of hierarchically wrinkled coatings for marine antifouling. Acs Appl Mater Interfaces 1(5):1031–1040

    Article  Google Scholar 

  35. Cao X, Pettitt M, Wode F et al (2010) Interaction of zoospores of the green alga ulva with bioinspired micro- and nanostructured surfaces prepared by polyelectrolyte layer-by-layer self-assembly. Adv Funct Mater 20(12):1984–1993

    Article  Google Scholar 

  36. Scardino A, de Nys R (2011) Mini review: biomimetic models and bioinspired surfaces for fouling control. Biofouling 27(1):73–86

    Article  Google Scholar 

  37. Scardino AJ (2009) Surface modification approaches to control marine biofouling. In: Hellio C, Yebra D (eds) Advances in marine antifouling coatings and technologies. Woodshead, Cambridge, pp 664–692

    Chapter  Google Scholar 

  38. Carman M, Estes T, Feinberg A et al (2006) Engineered antifouling microtopographies correlating wettability with cell attachment. Biofouling 22(1):11–21

    Article  Google Scholar 

  39. Callow J, Callow M (2009) Advances nanostructured surfaces for the control of marine biofouling: the AMBIO project. In: Hellio C, Yebra D (eds) Advances in marine antifouling coatings and technologies. Woodshead, Cambridge, pp 647–663

    Chapter  Google Scholar 

  40. Fletcher R (1989) A bioassay technique using the marine fouling green alga Enteromorpha. Int Biodeterioration 25(6):407–422

    Article  Google Scholar 

  41. Branscomb E, Rittschof D (1984) An investigation of low frequency sound waves as a means of inhibiting barnacle settlement. J Exp Mar Biol Ecol 79(2):149–154

    Article  Google Scholar 

  42. Mokrini R, Ben Mesaoud M, Daoudi M et al (2008) Meroditerpenoids and derivatives from the brown alga Cystoseira baccata and their antifouling properties. J Nat Prod 71(11):1806–1811

    Article  Google Scholar 

  43. Hellio C, Maréchal J, Da Gama B et al (2009) Natural marine products with antifouling activities. In: Hellio C, Yebra D (eds) Advances in marine antifouling coatings and technologies. Woodshead, Cambridge, pp 572–622

    Chapter  Google Scholar 

  44. Maréchal JP, Hellio C (2009) Challenges for the development of new non-toxic antifouling solutions. Int J Mol Sci 10(11):4623–4637

    Article  Google Scholar 

  45. Missakian MG, Burreson B, Scheuer P (1975) Pukalide, a furanocembranolide from the soft coral Sinularia abrupta. Tetrahedron 31(20):2513–2515

    Article  Google Scholar 

  46. Rittschof D (2009) Trends in marine biofouling research. In: Hellio C, Yebra D (eds) Advances in marine antifouling coatings and technologies. Woodshead, Cambridge, pp 725–748

    Chapter  Google Scholar 

  47. Olsen S, Pedersen L, Laursen M et al (2007) Enzyme-based antifouling coatings: a review. Biofouling 23(5):369–383

    Article  Google Scholar 

  48. Kristensen J, Meyer R, Laursen B et al (2008) Antifouling enzymes and the biochemistry of marine settlement. Biotechnol Adv 26(5):471–481

    Article  Google Scholar 

  49. Aldred N, Phang I, Conlan S et al (2008) The effects of a serine protease, Alcalase on the adhesives of barnacle cyprids (Balanus amphitrite). Biofouling 24(2):97–107

    Article  Google Scholar 

  50. Tasso M, Cordeiro A, Salchert K et al (2009) Covalent immobilization of subtilisin A onto thin films of maleic anhydride copolymers. Macromol Biosci 9(9):922–929

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Pei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pei, X., Ye, Q. (2015). Development of Marine Antifouling Coatings. In: Zhou, F. (eds) Antifouling Surfaces and Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45204-2_6

Download citation

Publish with us

Policies and ethics