Skip to main content

Antifouling of Micro-/Nanostructural Surfaces

  • Chapter
  • First Online:
Antifouling Surfaces and Materials

Abstract

Marine biofouling has become a global problem with both economic and environmental penalties. Nowadays, more and more environmental concerns drive antifouling (AF) technology towards nonbiocidal approaches; these approaches are mainly based on controlling the surface physicochemical, mechanical, and topographic properties that have significant impacts on the interactions between marine organisms and the surface. Surface topography is one key factor which can deter biofouling organisms, or facilitate fouling release (FR). The studies of AF or FR surfaces with special microtextures have gained momentum in the context of biofouling, coatings with micro-/nanostructural topographies have been designed for underwater applications. Surfaces based on special structure features and gradient patterns have been proved to have AF property, especially some biomimetic surface describes the process of using living organisms as the inspiration to control marine biofouling. Surface chemical composition is another key factor for AF/FR property; some further studies have proved that the combination of surface topography and surface chemistry may be more significant for AF and FR properties. Future developments should incorporate these multiple approaches to achieve AF and FR properties against multiple species and scales of biofouling organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magin CM, Finlay JA, Clay G, Callow ME, Callow JA, Brennan AB (2011) Antifouling performance of cross-linked hydrogels: refinement of an attachment model. Biomacromolecules 12(4):915–922

    Article  Google Scholar 

  2. Schultz MP, Swain GW (1999) The effect of biofilms on turbulent boundary layers. J Fluids Eng-Trans ASME 121(1):44–51

    Article  Google Scholar 

  3. Schultz MP, Swain GW (2000) The influence of biofilms on skin friction drag. Biofouling 15(1–3):129–139

    Article  Google Scholar 

  4. Townsin RL (2003) The ship hull fouling penalty. Biofouling 19:9–15

    Article  Google Scholar 

  5. Alzieu C (2000) Impact of tributyltin on marine invertebrates. Ecotoxicology 9(1–2):71–76

    Article  Google Scholar 

  6. de Nys R, Steinberg PD (2002) Linking marine biology and biotechnology. Curr Opin Biotechnol 13(3):244–248

    Article  Google Scholar 

  7. Callow ME, Callow JA, Pickett-Heaps JD, Wetherbee R (1997) Primary adhesion of Enteromorpha (Chlorophyta, Ulvales) propagules: quantitative settlement studies and video microscopy. J Phycol 33(6):938–947

    Article  Google Scholar 

  8. Marechal JP, Hellio C, Sebire M, Clare AS (2004) Settlement behaviour of marine invertebrate larvae measured by EthoVision 3.0. Biofouling 20(4–5):211–217

    Article  Google Scholar 

  9. Krishnan S, Weinman CJ, Ober CK (2008) Advances in polymers for anti-biofouling surfaces. J Mater Chem 18(29):3405–3413

    Article  Google Scholar 

  10. Lejars M, Margaillan A, Bressy C (2012) Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem Rev 112(8):4347–4390

    Article  Google Scholar 

  11. Gudipati CS, Greenlief CM, Johnson JA, Prayongpan P, Wooley KL (2004) Hyperbranched fluoropolymer and linear poly(ethylene glycol) based Amphiphilic crosslinked networks as efficient antifouling coatings: an insight into the surface compositions, topographies, and morphologies. J Polym Sci Pol Chem 42(24):6193–6208

    Article  Google Scholar 

  12. Gudipati CS, Finlay JA, Callow JA, Callow ME, Wooley KL (2005) The antifouling and fouling-release perfomance of hyperbranched fluoropolymer (HBFP)-poly(ethylene glycol) (PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga Ulva. Langmuir 21(7):3044–3053

    Article  Google Scholar 

  13. Feng SJ, Wang Q, Gao Y, Huang YG, Qing FL (2009) Synthesis and characterization of a novel amphiphilic copolymer capable as anti-biofouling coating material. J Appl Polym Sci 114(4):2071–2078

    Article  Google Scholar 

  14. Joshi RG, Goel A, Mannari VM, Finlay JA, Callow ME, Callow JA (2009) Evaluating fouling-resistance and fouling-release performance of smart polyurethane surfaces: an outlook for efficient and environmentally benign marine coatings. J Appl Polym Sci 114(6):3693–3703

    Article  Google Scholar 

  15. Weinman CJ, Finlay JA, Park D, Paik MY, Krishnan S, Sundaram HS, Dimitriou M, Sohn KE, Callow ME, Callow JA, Handlin DL, Willis CL, Kramer EJ, Ober CK (2009) ABC triblock surface active block copolymer with grafted ethoxylated fluoroalkyl amphiphilic side chains for marine antifouling/fouling-release applications. Langmuir 25(20):12266–12274

    Article  Google Scholar 

  16. Tasso M, Pettitt ME, Cordeiro AL, Callow ME, Callow JA, Werner C (2009) Antifouling potential of subtilisin a immobilized onto maleic anhydride copolymer thin films. Biofouling 25(6):505–516

    Article  Google Scholar 

  17. Dobretsov S, Xiong HR, Xu Y, Levin LA, Qian PY (2007) Novel antifoulants: inhibition of larval attachment by proteases. Mar Biotechnol 9(3):388–397

    Article  Google Scholar 

  18. Leroy C, Delbarre-Ladrat C, Ghillebaert F, Compere C, Combes D (2008) Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling 24(1):11–22

    Article  Google Scholar 

  19. Asuri P, Karajanagi SS, Kane RS, Dordick JS (2007) Polymer-nanotube-enzyme composites as active antifouling films. Small 3(1):50–53

    Article  Google Scholar 

  20. Dinu CZ, Zhu G, Bale SS, Anand G, Reeder PJ, Sanford K, Whited G, Kane RS, Dordick JS (2010) Enzyme-based nanoscale composites for use as active decontamination surfaces. Adv Funct Mater 20(3):392–398

    Article  Google Scholar 

  21. Callow JA, Callow ME (2011) Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun 2:244

    Article  Google Scholar 

  22. Zhang Z, Chao T, Chen SF, Jiang SY (2006) Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir 22(24):10072–10077

    Article  Google Scholar 

  23. Ma HW, Wells M, Beebe TP, Chilkoti A (2006) Surface-initiated atom transfer radical polymerization of oligo (ethylene glycol) methyl methacrylate from a mixed self-assembled monolayer on gold. Adv Funct Mater 16(5):640–648

    Article  Google Scholar 

  24. Jiang SY, Cao ZQ (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22(9):920–932

    Article  Google Scholar 

  25. Schumacher JF, Carman ML, Estes TG, Feinberg AW, Wilson LH, Callow ME, Callow JA, Finlay JA, Brennan AB (2007) Engineered antifouling microtopographies—effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva. Biofouling 23(1):55–62

    Article  Google Scholar 

  26. Carman ML, Estes TG, Feinberg AW, Schumacher JF, Wilkerson W, Wilson LH, Callow ME, Callow JA, Brennan AB (2006) Engineered antifouling microtopographies—correlating wettability with cell attachment. Biofouling 22(1):11–21

    Article  Google Scholar 

  27. Scardino AJ, Harvey E, De Nys R (2006) Testing attachment point theory: diatom attachment on microtextured polyimide biomimics. Biofouling 22(1):55–60

    Article  Google Scholar 

  28. Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23(6):690–718

    Article  Google Scholar 

  29. Efimenko K, Finlay J, Callow ME, Callow JA, Genzer J (2009) Development and testing of hierarchically wrinkled coatings for marine antifouling. ACS Appl Mater Interfaces 1(5):1031–1040

    Article  Google Scholar 

  30. Singhvi R, Stephanopoulos G, Wang DIC (1994) Effects of substratum morphology on cell physiology—review. Biotechnol Bioeng 43(8):764–771

    Article  Google Scholar 

  31. Curtis A, Wilkinson C (1997) Topographical control of cells. Biomaterials 18(24):1573–1583

    Article  Google Scholar 

  32. Wilkinson CDW, Riehle M, Wood M, Gallagher J, Curtis ASG (2002) The use of materials patterned on a nano- and micro-metric scale in cellular engineering. Mater Sci Eng C-Biomim Supramol Sys 19(1–2):263–269

    Article  Google Scholar 

  33. Arnold M, Cavalcanti-Adam EA, Glass R, Blummel J, Eck W, Kantlehner M, Kessler H, Spatz JP (2004) Activation of integrin function by nanopatterned adhesive interfaces. Chemphyschem 5(3):383–388

    Article  Google Scholar 

  34. van Kooten TG, von Recum AF (1999) Cell adhesion to textured silicone surfaces: the influence of time of adhesion and texture on focal contact and fibronectin fibril formation. Tissue Eng 5(3):223–240

    Article  Google Scholar 

  35. Scardino A, De Nys R, Ison O, O’Connor W, Steinberg P (2003) Microtopography and antifouling properties of the shell surface of the bivalve molluscs Mytilus galloprovincialis and Pinctada imbricata. Biofouling 19:221–230

    Article  Google Scholar 

  36. Bers AV, Wahl M (2004) The influence of natural surface microtopographies on fouling. Biofouling 20(1):43–51

    Article  Google Scholar 

  37. Callow ME, Jennings AR, Brennan AB, Seegert CE, Gibson A, Wilson L, Feinberg A, Baney R, Callow JA (2002) Microtopographic cues for settlement of zoospores of the green fouling alga Enteromorpha. Biofouling 18(3):237–245

    Article  Google Scholar 

  38. Hoipkemeier-Wilson L, Schumacher J, Carman M, Gibson A, Feinberg A, Callow M, Finlay J, Callow J, Brennan A (2004) Antifouling potential of lubricious, micro-engineered, PDMS elastomers against zoospores of the green fouling alga Ulva (Enteromorpha). Biofouling 20(1):53–63

    Article  Google Scholar 

  39. Berntsson KM, Jonsson PR, Lejhall M, Gatenholm P (2000) Analysis of behavioural rejection of micro-textured surfaces and implications for recruitment by the barnacle Balanus improvisus. J Exp Mar Biol Ecol 251(1):59–83

    Article  Google Scholar 

  40. Scheuerman TR, Camper AK, Hamilton MA (1998) Effects of substratum topography on bacterial adhesion. J Colloid Interface Sci 208(1):23–33

    Article  Google Scholar 

  41. Petronis S, Berntsson K, Gold J, Gatenholm P (2000) Design and microstructuring of PDMS surfaces for improved marine biofouling resistance. J Biomater Sci-Polym Ed 11(10):1051–1072

    Article  Google Scholar 

  42. Scardino AJ, Guenther J, de Nys R (2008) Attachment point theory revisited: the fouling response to a microtextured matrix. Biofouling 24(1):45–53

    Article  Google Scholar 

  43. Lee FP, Wang DJ, Chen LK, Kung CM, Wu YC, Ou KL, Yu CH (2013) Antibacterial nanostructured composite films for biomedical applications: microstructural characteristics, biocompatibility, and antibacterial mechanisms. Biofouling 29(3):295–305

    Article  Google Scholar 

  44. Koc Y, de Mello AJ, McHale G, Newton MI, Roach P, Shirtcliffe NJ (2008) Nano-scale superhydrophobicity: suppression of protein adsorption and promotion of flow-induced detachment. Lab on a Chip 8(4):582–586

    Article  Google Scholar 

  45. Spori DM, Drobek T, Zuercher S, Spencer ND (2010) Cassie-state wetting investigated by means of a hole-to-pillar density gradient. Langmuir 26(12):9465–9473

    Article  Google Scholar 

  46. Gunari N, Brewer LH, Bennett SM, Sokolova A, Kraut ND, Finlay JA, Meyer AE, Walker GC, Wendt DE, Callow ME, Callow JA, Bright FV, Detty MR (2011) The control of marine biofouling on xerogel surfaces with nanometer-scale topography. Biofouling 27(2):137–149

    Article  Google Scholar 

  47. Scardino AJ, Zhang H, Cookson DJ, Lamb RN, Nys Rd (2009) The role of nano-roughness in antifouling. Biofouling 25(8):757–767

    Article  Google Scholar 

  48. Shivapooja P, Wang QM, Orihuela B, Rittschof D, Lopez GP, Zhao XH (2013) Bioinspired surfaces with dynamic topography for active control of biofouling. Adv Mater 25(10):1430–1434

    Article  Google Scholar 

  49. Scardino AJ, Zhang H, Cookson DJ, Lamb RN, de Nys R (2009) The role of nano-roughness in antifouling. Biofouling 25(8):757–767

    Article  Google Scholar 

  50. Ekblad T, Andersson O, Tai F-I, Ederth T, Liedberg B (2009) Lateral control of protein adsorption on charged polymer gradients. Langmuir 25(6):3755–3762

    Article  Google Scholar 

  51. Genzer J, Bhat RR (2008) Surface-bound soft matter gradients. Langmuir 24(6):2294–2317

    Article  Google Scholar 

  52. Chaudhury MK, Daniel S, Callow ME, Callow JA, Finlay JA (2006) Settlement behavior of swimming algal spores on gradient surfaces. Biointerphases 1(1):18–21

    Article  Google Scholar 

  53. Schumacher JF, Long CJ, Callow ME, Finlay JA, Callow JA, Brennan AB (2008) Engineered nanoforce gradients for inhibition of settlement (attachment) of swimming algal spores. Langmuir 24(9):4931–4937

    Article  Google Scholar 

  54. Xiao LL, Thompson SEM, Rohrig M, Callow ME, Callow JA, Grunze M, Rosenhahn A (2013) Hot embossed microtopographic gradients reveal morphological cues that guide the settlement of zoospores. Langmuir 29(4):1093–1099

    Article  Google Scholar 

  55. Qu LT, Dai LM, Stone M, Xia ZH, Wang ZL (2008) Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 322(5899):238–242

    Article  Google Scholar 

  56. Wahl M, Kroger K, Lenz M (1998) Non-toxic protection against epibiosis. Biofouling 12(1–3):205–226

    Article  Google Scholar 

  57. Fingerman M, Nagabhushanam R, Thompson MF (2000) Recent advances in marine biotechnology. Sci Publishers 3:245–257

    Google Scholar 

  58. Scardino AJ, de Nys R (2011) Mini review: biomimetic models and bioinspired surfaces for fouling control. Biofouling 27(1):73–86

    Article  Google Scholar 

  59. Magin CM, Cooper SP, Brennan AB (2010) Non-toxic antifouling strategies. Mater Today 13(4):36–44

    Article  Google Scholar 

  60. Bers AV, D’Souza F, Klijnstra JW, Willemsen PR, Wahl M (2006) Chemical defence in mussels: antifouling effect of crude extracts of the periostracum of the blue mussel Mytilus edulis. Biofouling 22(4):251–259

    Article  Google Scholar 

  61. Ralston E, Swain G (2009) Bioinspiration-the solution for biofouling control? Bioinspir Biomim 4(1):015007

    Article  Google Scholar 

  62. Genzer J, Marmur A (2008) Biological and synthetic self-cleaning surfaces. MRS Bull 33(8):742–746

    Article  Google Scholar 

  63. Cao XY, Pettitt ME, Wode F, Sancet MPA, Fu JH, Ji JA, Callow ME, Callow JA, Rosenhahn A, Grunze M (2010) Interaction of zoospores of the green alga ulva with bioinspired micro- and nanostructured surfaces prepared by polyelectrolyte layer-by-Layer self-assembly. Adv Funct Mater 20(12):1984–1993

    Article  Google Scholar 

  64. Gucinski H, Baier RE (1983) Surface-properties of porpoise and killer whale skin invivo. Am Zool 23(4):959–959

    Google Scholar 

  65. Vrolijk NH, Targett NM, Baier RE, Meyer AE (1990) Surface characterisation of two gorgonian coral species: implications for a natural antifouling defence. Biofouling 2(1):39–54

    Article  Google Scholar 

  66. Ball P (1999) Engineering—shark skin and other solutions. Nature 400(6744):507

    Article  Google Scholar 

  67. Bechert DW, Bruse M, Hage W (2000) Experiments with three-dimensional riblets as an idealized model of shark skin. Exp Fluids 28(5):403–412

    Article  Google Scholar 

  68. Tinto WF, John L, Reynolds WF, McLean S (1991) Novel pseudopteranoids of pseudopterogorgia-acerosa. Tetrahedron 47(41):8679–8686

    Article  Google Scholar 

  69. McKenzie JD, Kelly MS (1994) Comparative-study of sub-cuticular bacteria in brittlestars (echinodermata, ophiuroidea). Mar Biol 120(1):65–80

    Google Scholar 

  70. Kelly MS, McKenzie JD (1995) Survey of the occurrence and morphology of sub-cuticular bacteria in shelf echinoderms from the north-east atlantic-ocean. Mar Biol 123(4):741–756

    Article  Google Scholar 

  71. Guenther J, Heimann K, de Nys R (2007) Pedicellariae of the crown-of-thorns sea star Acanthaster planci are not an effective defence against fouling. Mar Ecol-Prog Ser 340:101–108

    Article  Google Scholar 

  72. Thomason JC, Davenport J, Rogerson A (1994) Antifouling performance of the embryo and eggcase of the dogfish scyliorhinus-canicula. J Mar Biol Assoc UK 74(4):823–836

    Google Scholar 

  73. Wan F, Ye Q, Yu B, Pei XW, Zhou F (2013) Multiscale hairy surfaces for nearly perfect marine antibiofouling. J Mat Chem B 1(29):3599–3606

    Article  Google Scholar 

  74. Marmur A (2006) Super-hydrophobicity fundamentals: implications to biofouling prevention. Biofouling 22(2):107–115

    Article  Google Scholar 

  75. Feng L, Zhang YA, Xi JM, Zhu Y, Wang N, Xia F, Jiang L (2008) Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24(8):4114–4119

    Article  Google Scholar 

  76. Furstner R, Barthlott W, Neinhuis C, Walzel P (2005) Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21(3):956–961

    Article  Google Scholar 

  77. Liu MJ, Zheng YM, Zhai J, Jiang L (2010) Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Acc Chem Res 43(3):368–377

    Article  Google Scholar 

  78. Patankar NA (2004) Mimicking the lotus effect: influence of double roughness structures and slender pillars. Langmuir 20(19):8209–8213

    Article  Google Scholar 

  79. Sharma CS, Abhishek K, Katepalli H, Sharma A (2011) Biomimicked superhydrophobic polymeric and carbon surfaces. Ind Eng Chem Res 50(23):13012–13020

    Article  Google Scholar 

  80. Chapman J, Regan F (2012) Nanofunctionalized superhydrophobic antifouling coatings for environmental sensor applications advancing deployment with answers from nature. Adv Eng Mater 14(4):B175–B184

    Article  Google Scholar 

  81. Zheng J, Song W, Huang H, Chen H (2010) Protein adsorption and cell adhesion on polyurethane/Pluronic ® surface with lotus leaf-like topography. Colloid Surf B-Biointerfaces 77(2):234–239

    Article  Google Scholar 

  82. Wan F, Pei XW, Yu B, Ye Q, Zhou F, Xue QJ (2012) Grafting polymer brushes on biomimetic structural surfaces for anti-algae fouling and foul release. ACS Appl Mater Interfaces 4(9):4557–4565

    Article  Google Scholar 

  83. Chapman J, Regan F (2012) Nanofunctionalized superhydrophobic antifouling coatings for environmental sensor applications—advancing deployment with answers from nature. Adv Eng Mater 14(4):B175–B184

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wan, F., Ye, Q., Zhou, F. (2015). Antifouling of Micro-/Nanostructural Surfaces. In: Zhou, F. (eds) Antifouling Surfaces and Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45204-2_4

Download citation

Publish with us

Policies and ethics