Skip to main content

Star Map Processing Algorithm of Star Sensor and Autonomous Celestial Navigation

  • Chapter
  • First Online:
INS/CNS/GNSS Integrated Navigation Technology

Abstract

Celestial navigation is a kind of fully autonomous navigation method. It has the following characteristics: (1) no additional equipment, except the standard attitude sensors such as star sensor and earth sensor, is needed; (2) both orbit information and attitude data can be provided; and (3) self-contained, nonradiating. So, it has broad application in satellites, airships, deep space explorers, etc. The method is based on information about a celestial body (Sun, Earth, Moon, and stars) in an inertial frame at a certain time. With the increasing development of autonomous celestial navigation technology, the method of using celestial sensors to determinate spacecraft attitude has been widely studied. Currently, star sensors are widely used to realize high-precision spacecraft navigation. In this chapter, the star map preprocessing method of star sensor is studied first, which includes the processing method for fuzzy star maps and distortion correction method for star maps, providing high-quality star maps for star map matching. Second, an effective star map identification method is introduced to acquire effective starlight vector direction. Finally, a star sensor-based celestial navigation method is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Hancock BR, Stirbl RC, Cunningham TJ, Pain B, Wrigley CJ, Ringold PG (2001) CMOS active pixel sensor specific performance effects on star tracker/image position accuracy. Proc SPIE 4284:43–53

    Article  Google Scholar 

  2. Pasetti A, Habine S, Creasey R (1999) Dynamical binning for high angular rate star tracking. Proceedings of the 4th international conference on spacecraft guidance, navigation and control systems, Noordwijk, 18–21 Oct, pp 255–266

    Google Scholar 

  3. Li X, Zhao H (2009) Analysis of star image centroid accuracy of an APS star sensor in rotation. Aerosp Control Appl 35:11–16

    Google Scholar 

  4. Star1000 1M Pixel Radiation Hard CMOS Image Sensor (2007) Cypress Semiconductor Corporation, San Jose

    Google Scholar 

  5. Chang SG, Yu B, Vetterli M (2000) Adaptive wavelet thresholding for image de-noising and compression. IEEE Trans Image Process 9:1532–1546

    Article  MATH  MathSciNet  Google Scholar 

  6. Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Patt Anal Mach Intell 11:674–693

    Article  MATH  Google Scholar 

  7. Gonzalez RC, Woods RE (2002) Digital image processing, 2nd ed. Prentice Hall, Englewood Cliffs

    Google Scholar 

  8. Kaur L, Gupta LS, Chauhan RC, (2002) Image de-noising using wavelet thresholding. Proceeding of the third Indian conference on computer vision, graphics & image processing, Ahmadabad, 16–18 Dec, pp 1522–1531

    Google Scholar 

  9. Mihcak KM, Kozintsev L, Ramchandran K (1999) Low-complexity image de-noising based on statistical modeling of wavelet coefficients. IEEE Sign Process Lett 6:300–303

    Article  Google Scholar 

  10. Quan W, Zhang W (2011) Restoration of motion-blurred star image based on Wiener Filter. Proceeding of the fourth IEEE international conference on intelligent computation technology and automation, Shenzhen, 28–29 March, pp 691–694

    Google Scholar 

  11. Costello TP, Mikhael WB (2003) Efficient restoration of space-variant blurs from physical optics by sectioning with modified Wiener filtering. Digital Signal Process 13:1–22

    Article  Google Scholar 

  12. Tan KC, Lim H, Tan BTG (1991) Windowing techniques for image restoration. Graph Mod Image Process 53:491–500

    Article  MATH  Google Scholar 

  13. Zhang GJ, Wei XG, Jiang J (2006) Star map identification based on a modified triangle algorithm. ACTA Aeronaut ET Astronaut SINICA 27:1150–1154

    Google Scholar 

  14. Rousseau GLA, Bostel J, Mazari B (2005) Star recognition algorithm for APS star tracker: oriented triangles. IEEE Aero El Sys Mag 20:27–31

    Article  Google Scholar 

  15. Lin T, Zhou JL (2000) All-sky automated quaternary star pattern recognition. J Astronaut 21:82–85

    Google Scholar 

  16. Wang ZL, Quan W (2004) An all-sky autonomous star map identification algorithm. IEEE Aero El Sys Mag 19:10–14

    Article  Google Scholar 

  17. Cole CL, Crassidis JL (2006) Fast star-pattern recognition using planar triangles. J Guid Control Dynam 29:64–71

    Article  Google Scholar 

  18. Lee H, Bang H (2007) Star pattern identification technique by modified grid algorithm. IEEE Trans Aero Elec Sys 43:202–213

    Google Scholar 

  19. Liebe CC (1992) Pattern recognition of star constellations for spacecraft applications. IEEE Aero El Sys Mag 7:10–16

    Article  Google Scholar 

  20. Udomkesmalee S, Alexander JW, Tolivar AF (1994) Stochastic star identification. J Guid Control Dynam 17:1283–1286

    Article  MATH  Google Scholar 

  21. Wang GJ, Fang JC (2005) New star pattern recognition approach based on Hausdorff distance. J Beijing Univ Aeronaut Astronaut 31:508–511

    Google Scholar 

  22. Mortari D, Junkins J, Samaan M (2001) Lost-in-space pyramid algorithm for robust star pattern recognition. Proceedings of 24th annual AAS guidance and control conference, Breckenridge

    Google Scholar 

  23. Jian H, Dickerson JA (2000) Neural network based autonomous star identification algorithm. J Guid Control Dynam 23:728–735

    Article  Google Scholar 

  24. Paladugu L, Williams BG, Schoen MP (2003) Star pattern recognition for attitude determination using genetic algorithms. Proceedings of the 17th AIAA/USU conference on small satellites, Logan

    Google Scholar 

  25. Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by ant colonies. Proceedings of the 1st European conference on artificial lift, Paris

    Google Scholar 

  26. Li Y, Hilton ABC (2007) Optimal groundwater monitoring design using an ant colony optimization paradigm. Environ Modell Softw 22:110–116

    Article  Google Scholar 

  27. Bautista J, Pereira J (2007) Ant algorithms for a time and space constrained assembly line balancing problem. Eur J Opter Res 177:2016–2032

    Article  MATH  Google Scholar 

  28. Maniezzo V, Carbonaro A (2000) An ants heuristic for the frequency assignment program. Future Gener Comput Syst 16:927–935

    Article  Google Scholar 

  29. Gao SW, Guo L (2007) Adaptive ant colony algorithm based on dynamic weighted rule. Comput Appl 27:1741–1743

    Google Scholar 

  30. Watanabe I, Matsui S (2003) Improving the performance of ACO algorithms by adaptive control of candidate set. Proceedings of the 2003 congress on evolutionary computation, Canberra

    Google Scholar 

  31. Dorigo M, Luca M (2002) The Ant-Q: algorithm applied to the nuclear reload problem. Ann Nucl Energ 29:1455–1470

    Article  Google Scholar 

  32. Jackson DE, Holcombe M, Ratnieks FLW (2004) Trail geometry gives polarity to ant foraging networks. Nature 432:907–909

    Article  Google Scholar 

  33. Mekle D, Middendorf M (2002) Modeling the dynamics of ant colony optimization. Evolut Comput 10:235–262

    Article  Google Scholar 

  34. Duan HB (2005) Ant colony algorithms: theory and applications. Science, Beijing

    Google Scholar 

  35. Hye YK, John LJ (2002) Self-organizing guide star selection algorithm for star trackers: thinning method. Proceedings of the 2002 IEEE Aerospace Conference Proceedings, Big Sky Montana, USA

    Google Scholar 

  36. Psiaki ML, Huang LJ, Fox SM (1993) Ground tests of magnetometer-based autonomous navigation (MAGNAV) for low-earth-orbiting spacecraft. J Guidance Control Dyn 16:206–214

    Article  Google Scholar 

  37. Yoon JC, Lee BS (2000) Spacecraft orbit determination using GPS navigation solutions aerospace science and technology, pp 215–221

    Google Scholar 

  38. Truong SH, Hart RC, Shoan WC, Wood T (1997) High accuracy autonomous navigation using the Global Positioning System (GPS). Proceeding of the 12th international symposium on ‘Space Flight Dynamics’, ESOC, Darmstadt, 2–6 June, pp 73–78

    Google Scholar 

  39. Long A, Leung D, Folta D, Gramling C (2000) Autonomous navigation of high-earth satellites using celestial objects and Doppler measurements. AIAA/AAS Astrodynamis Specialist Conference, pp 1–9

    Google Scholar 

  40. White RL, Gounley RB (1987) Satellite autonomous navigation with SHAD. The Charles Stark Draper Laboratory, April

    Google Scholar 

  41. Riant P (1986) Analysis of a satellite navigation system by stellar refraction. 36th congress of the international astronautical federation, Stockholm, Sweden, 7–12 Oct 1986, pp 1–8

    Google Scholar 

  42. Gounley R, White R, Gait E (1984) Autonomous satellite navigation by stellar refraction. Guidance and control conference, vol 7, Mar–Apr 1984, pp 129–134

    Google Scholar 

  43. Hosken RW, Wertz JR (1995) Microcosm autonomous navigation system on-orbit operation. Adv Astronaut Sci 1–15

    Google Scholar 

  44. J. Simon J, Uhlmann JK (1997) A new extension of the Kalman Filter to nonlinear systems. In: The 11th international symposium on aerospace/defense sensing, simulation and controls, multi sensor fusion, tracking and resource management, SPIE

    Google Scholar 

  45. Julier S, Uhlmann J, Durrant-Whyte HF (2000) A new method for the non linear transformation of means and covariances in filters and estimators. IEEE Trans Autom Control AC–45 3:477–482

    Article  MathSciNet  Google Scholar 

  46. Wan EA, Van Der Merwe R (2000) The unscented Kalman filter for nonlinear estimation. Adaptive systems for signal processing, communications, and control symposium, pp 153–158

    Google Scholar 

  47. Li W, Leung H, Zhou YF (2004) Space-time registration of radar and ESM using unscented Kalman Filter. IEEE Trans Aerosp Electron Sys 40:824–836

    Article  Google Scholar 

  48. Vershinin YA, West MJ (2001) A new data fusion algorithm based on the continuous-time decentralized Kalman filter, target tracking: algorithms and applications (Ref. No. 2001/174). IEE 1:16/1–16/6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Quan .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 National Defense Industry Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Quan, W., Gong, X., Fang, J., Li, J. (2015). Star Map Processing Algorithm of Star Sensor and Autonomous Celestial Navigation. In: INS/CNS/GNSS Integrated Navigation Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45159-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45159-5_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45158-8

  • Online ISBN: 978-3-662-45159-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics