Skip to main content

Machinability of Magnesium and Its Alloys: A Review

  • Chapter
  • First Online:
Traditional Machining Processes

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

In the last decades, the interest for magnesium has increased notably. In particular, the need for weight reduction in the automotive industry has made magnesium a suitable material to replace traditional structural materials because of its low density. But, in addition, magnesium is also finding applications in different sectors as aeronautics, electronics, medical or sports. Thus, machining of magnesium is a topic of great interest for industry and researchers. In the present work, an introduction to the main topics on magnesium machining is presented. The text covers from general topics of magnesium to more specific ones related with the machining process. In this sense, an approximation to the properties of magnesium, magnesium alloys and metal matrix composites of magnesium, and some applications are presented to give a general overview of magnesium. After that, the machining of magnesium is covered addressing general issues and more specific particularities of magnesium machining, such as the ignition risk. To conclude, a brief review of some of the main experimental investigations on magnesium machining is presented, covering drilling, milling and turning processes. In these studies, the machining process is assessed using indicators such as surface finish, temperature or tool wear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McDonough WF (2001) The composition of the Earth. Int Geophys 76:3–23

    Article  MathSciNet  Google Scholar 

  2. Gray JE, Luan B (2002) Protective coatings on magnesium and its alloys—a critical review. J Alloy Compd 336(1–2):88–113

    Article  Google Scholar 

  3. Kipouros GJ, Sadoway DR (2001) A thermochemical analysis of the production of anhydrous MgCl2. J Light Met 1(2):111–117

    Article  Google Scholar 

  4. Mordike BL, Ebert T (2001) Magnesium. Properties—applications—potential. Mater Sci Eng, A 302(1):37–45

    Article  Google Scholar 

  5. Minerals Yearbook (2012) Magnesium. http://minerals.usgs.gov/minerals/pubs/commodity/magnesium/index.html#myb. Accessed 23 May 2014

  6. Scintilla LD, Tricarico L (2013) Experimental investigation on fiber and CO2 inert gas fusion cutting of AZ31 magnesium alloy sheets. Opt Laser Technol 46:42–52

    Article  Google Scholar 

  7. Campbell FC (2006) Magnesium and beryllium. In: Campbell FC (ed) Manufacturing technology for aerospace structural materials. Elsevier Science, Oxford

    Google Scholar 

  8. Kleiner M, Geiger M, Klaus A (2003) Manufacturing of lightweight components by metal forming. CIRP Ann—Manuf Technol 52(2):521–542

    Article  Google Scholar 

  9. Shin HW (2011) A feasibility study to replace steel made hood panels by magnesium alloy made hood panels. Int J Precis Eng Manuf 13(11):2011–2016

    Article  Google Scholar 

  10. AISI 4340 steel, annealed, 25 mm round. http://www.matweb.com/search/DataSheet.aspx?MatGUID=fd1b43a97a8a44129b32b9de0d7d6c1a. Accessed 23 May 2014

  11. Gray cast iron, ASTM A 48 class 40. http://www.matweb.com/search/DataSheet.aspx?MatGUID=ec56a89f37f74e2f867a64b0f87f1e9d. Accessed 23 May 2014

  12. Titanium Ti-6Al-4 V (Grade 5), annealed. http://www.matweb.com/search/DataSheet.aspx?MatGUID=a0655d261898456b958e5f825ae85390. Accessed 23 May 2014

  13. Aluminum A380.0-F die casting alloy. http://www.matweb.com/search/DataSheet.aspx?MatGUID=5f92a8f7d6ad416c8ce9398cae14a363. Accessed 23 May 2014

  14. Magnesium AZ91D-F, cast. http://www.matweb.com/search/DataSheet.aspx?MatGUID=07baafbb9c364fb18fd413bceced867f. Accessed 23 May 2014

  15. Overview of materials for alpha/beta titanium alloy. http://www.matweb.com/search/DataSheet.aspx?MatGUID=4dac23c848db4780a067fd556906cae6&ckck=1. Accessed 23 May 2014

  16. Overview of materials for AISI 4000 series steel. http://www.matweb.com/search/DataSheet.aspx?MatGUID=210fcd12132049d0a3e0cabe7d091eef. Accessed 23 May 2014

  17. Overview of materials for aluminum alloy. http://www.matweb.com/search/DataSheet.aspx?MatGUID=ab8aeb2d293041c4a844e397b5cfbd4e. Accessed 23 May 2014

  18. Overview of materials for magnesium alloy. http://www.matweb.com/search/DataSheet.aspx?MatGUID=4e6a4852b14c4b12998acf2f8316c07c. Accessed 23 May 2014

  19. Overview of materials for gray cast iron. http://www.matweb.com/search/DataSheet.aspx?MatGUID=f3cd25980ab24fdaa5893252cd2bc192. Accessed 23 May 2014

  20. Polmear IJ (2005) Magnesium alloys. In: Polmear IJ (ed) Light alloys, 4th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  21. Mebarki N, Kumar NVR, Blandin JJ, Suery M, Pelloux F, Khelifati G (2005) Correlations between ignition and oxidation behaviours of AZ91 magnesium alloys. Mater Sci Technol 21(10):1145–1151

    Article  Google Scholar 

  22. Rao J, Li H (2010) Oxidation and ignition behavior of a magnesium alloy containing rare earths elements. Int J Adv Manuf Technol 51(1–4):225–231

    Article  Google Scholar 

  23. Kumar NVR, Blandin JJ, Suéry M, Grosjean E (2003) Effect of alloying elements on the ignition resistance of magnesium alloys. Scripta Mater 49(3):225–230

    Article  Google Scholar 

  24. Mishra SK, Biswas S, Satapathy A (2014) A study on processing, characterization and erosion wear behavior of silicon carbide particle filled ZA-27 metal matrix composites. Mater Des 55:958–965

    Article  Google Scholar 

  25. Franco LF, Becerril EB, Ruiz JL, Rodríguez JGG, Guardian R, Rosales I (2011) Wear performance of TiC as reinforcement of a magnesium alloy matrix composite. Compos B 42:275–279

    Article  Google Scholar 

  26. Westengen H (2001) Magnesium alloys: properties and applications. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, Veyssière P (eds) Encyclopedia of materials: science and technology, 2nd edn. Elsevier, Oxford

    Google Scholar 

  27. Wang J, Liu YB, An J, Wang LM (2008) Wear mechanism map of uncoated HSS tools during drilling die-cast magnesium alloy. Wear 265(5–6):685–691

    Article  Google Scholar 

  28. Ramnath BV, Elanchezhian C, Jaivignesh M, Rajesh S, Parswajinan C, Ghias ASA (2014) Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites. Mater Des 58:332–338

    Article  Google Scholar 

  29. Prawoto Y, Djuansjah JRP, Tawi KB, Fanone MM (2013) Tailoring microstructures: a technical note on an eco-friendly approach to weight reduction through heat treatment. Mater Des 50:635–645

    Article  Google Scholar 

  30. Carvalho I, Baier T, Simoes R, Silva A (2012) Reducing fuel consumption through modular vehicle architectures. Appl Energy 93:556–563

    Article  Google Scholar 

  31. Bhowmick S, Lukitsch MJ, Alpas AT (2010) Dry and minimum quantity lubrication drilling of cast magnesium alloy (AM60). Int J Mach Tools Manuf 50(5):444–457

    Article  Google Scholar 

  32. Davim JP, António CAC (2001) Optimal drilling of particulate metal matrix composites based on experimental and numerical procedures. Int J Mach Tools Manuf 41:21–31

    Article  Google Scholar 

  33. Kulekci MK (2008) Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol 39(9–10):851–865

    Article  Google Scholar 

  34. Du J, Han W, Peng Y (2010) Life cycle greenhouse gases, energy and cost assessment of automobiles using magnesium from Chinese Pidgeon process. J Clean Prod 18(2):112–119

    Article  Google Scholar 

  35. Ion JC (2005) Engineering Materials. In: Ion JC (ed) Laser processing of engineering materials. Butterworth-Heinemann, Oxford

    Google Scholar 

  36. Trojanová Z, Gärtnerová V, Jäger A, Námešný A, Chalupová M, Palček P, Lukáč P (2009) Mechanical and fracture properties of an AZ91 Magnesium alloy reinforced by Si and SiC particles. Composites Sci Technol 69(13):2256–2264

    Article  Google Scholar 

  37. Froes FH, Eliezer D, Aghion E (1998) The science, technology, and applications of magnesium. JOM 50(9):30–34

    Article  Google Scholar 

  38. Tharumarajah A, Koltun P (2007) Is there an environmental of using magnesium of using components for light-weighting cars? J Clean Prod 15(11–12):1007–1013

    Article  Google Scholar 

  39. Davies G (2003) Future trends in automotive body materials. In: Davies G (ed) Materials for automobile bodies. Butterworth-Heinemann, Oxford

    Google Scholar 

  40. Charles JA, Crane FAA, Furness JAG (1997) Materials for airframes. In: Charles JA, Crane FAA, Furness JAG (eds) Selection and use of engineering materials, 3rd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  41. Eliezer D, Aghion E, Froes FH (1998) Magnesium science, technology and applications. Adv Perform Mater 5(3):201–212

    Article  Google Scholar 

  42. Dobrzański LA, Tański T, Čížek L, Brytan Z (2007) Structure and properties of the magnesium casting alloys. J Mater Process Technol 192–193:567–574

    Article  Google Scholar 

  43. Deetz J (2005) The use of wrought magnesium in bicycles. JOM 57(5):50–53

    Article  Google Scholar 

  44. Denkena B, Lucas A (2007) Biocompatible magnesium alloys as absorbable implant materials—adjusted surface and subsurface properties by machining processes. Ann CIRP 56(1):113–116

    Article  Google Scholar 

  45. Witte F (2010) The history of biodegradable magnesium implants: a review. Acta Biomater 6(5):1680–1692

    Article  Google Scholar 

  46. Mitsuishi M, Cao J, Bártolo P, Friedrich D, Shih AJ, Rajurkar K, Sugita N, Harada K (2013) Biomanufacturing. CIRP Ann—Manuf Technol 62:585–606

    Article  Google Scholar 

  47. Witte F, Feyerabend F, Maier P, Fischer J, Störmer M, Blawert C, Dietzel W, Hort N (2007) Biodegradable magnesium–hydroxyapatite metal matrix composites. Biomaterials 28:2163–2174

    Article  Google Scholar 

  48. Park CW, Kim YH (2012) A study on the manufacturing of digital camera barrel using magnesium alloy. Int J Precis Eng Manuf 13(7):1047–1052

    Article  Google Scholar 

  49. Pfeifer M (2009) Material properties and materials science. In: Pfeifer M (ed) Materials enabled designs. Butterworth-Heinemann, Boston

    Google Scholar 

  50. Elgallad EM, Samuel FH, Samuel AM, Doty HW (2010) Machinability aspects of new Al–Cu alloys intended for automotive castings. J Mater Process Technol 210(13):1754–1766

    Article  Google Scholar 

  51. Shokrani A, Dhokia V, Newman ST (2012) Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. Int J Mach Tools Manuf 57:83–101

    Article  Google Scholar 

  52. ASM (1989) ASM handbook-machining, vol 16. ASM International, Ohio

    Google Scholar 

  53. Anilchandra AR, Surappa MK (2010) Influence of tool rake angle on the quality of pure magnesium chip-consolidated product. J Mater Process Technol 210:423–428

    Article  Google Scholar 

  54. Byrne G, Dornfeld D, Denkena B (2003) Advancing cutting technology. CIRP Ann—Manuf Technol 52(2):483–507

    Article  Google Scholar 

  55. Grzesik W (2008) Machinability of engineering materials. In: Grzesik W (ed) Advanced machining processes of metallic materials. Elsevier, Amsterdam

    Google Scholar 

  56. Tomac N, Tønnessen K (1991) Formation of flank build-up in cutting magnesium alloys. CIRP Ann—Manuf Technol 40(1):79–82

    Google Scholar 

  57. Aurich JC, Dornfeld D, Arrazola PJ, Franke V, Leitz L, Min S (2009) Burrs-Analysis, control and removal. CIRP Ann—Manuf Technol 58(2):519–542

    Article  Google Scholar 

  58. Pu Z, Outeiro JC, Batista AC, Dillon OW, Puleo DA, Jawahir IS (2012) Enhanced surface integrity of AZ31B Mg alloy by cryogenic machining towards improved functional performance of machined components. Int J Mach Tools Manuf 56:17–27

    Article  Google Scholar 

  59. Outeiro JC, Rossi F, Fromentin G, Poulachon G, Germain G, Batista AC (2013) Process mechanics and surface integrity induced by dry and cryogenic machining of AZ31B-O magnesium alloy. Procedia CIRP 8:487–492

    Article  Google Scholar 

  60. Le Coz G, Marinescu M, Devillez A, Dudzinski D, Velnom L (2012) Measuring temperature of rotating cutting tools: application to MQL drilling and dry milling of aerospace alloys. Appl Therm Eng 36:434–441

    Article  Google Scholar 

  61. Weinert K, Inasaki I, Sutherland JW, Wakabayashi T (2004) Dry machining and minimum quantity lubrication. CIRP Ann—Manuf Technol 53(2):511–537

    Article  Google Scholar 

  62. Zhao N, Hou J, Zhu S (2011) Chip ignition in research on high-speed face milling AM50A magnesium alloy. Second international conference on mechanic automation and control engineering (MACE), vol 15–17, pp 1102–1105

    Google Scholar 

  63. ASM (1990) ASM handbook-properties and selection: nonferrous alloys and special purpose materials, vol 2. ASM International, Ohio

    Google Scholar 

  64. Machado AR, Wallbank J (1997) The effect of extremely low lubricant volumes in machining. Wear 210(1–2):76–82

    Article  Google Scholar 

  65. Villeta M, Rubio EM, Pipaón JMS, Sebastián MA (2011) Surface finish optimization of magnesium pieces obtained by dry turning based on Taguchi techniques and statistical tests. Mater Manuf Process 26:1503–1510

    Article  Google Scholar 

  66. Gariboldi E (2003) Drilling a magnesium alloy using PVD coated twist drills. J Mater Process Technol 134(3):287–295

    Article  MathSciNet  Google Scholar 

  67. Rubio EM, Valencia JL, Carou D, Saá A (2012) Inserts selection for intermittent turning of magnesium pieces. Appl Mech Mater 217–219:1581–1591

    Article  Google Scholar 

  68. Tönshoff HK, Winkler J (1997) The influence of tool coatings in machining of magnesium. Surf Coat Technol 94–95:610–616

    Article  Google Scholar 

  69. Wojtowicz N, Danis I, Monies F, Lamesle P, Chieragatia R (2013) The influence of cutting conditions on surface integrity of a wrought magnesium alloy. Procedia Eng 63:20–28

    Article  Google Scholar 

  70. Kurihara K, Tozawa T, Kato H (1981) Cutting temperature of magnesium alloys at extremely high cutting speeds. J Jpn Inst Light Met 31:255–260

    Article  Google Scholar 

  71. Rubio EM, Valencia JL, Saá AJ, Carou D (2013) Experimental study of the dry facing of magnesium pieces based on the surface roughness. Int J Precis Eng Manuf 14(6):995–1001

    Article  Google Scholar 

  72. Villeta M, Agustina B, Pipaón JMS, Rubio EM (2012) Efficient optimisation of machining processes based on technical specifications for surface roughness: application to magnesium pieces in the aerospace industry. Int J Adv Manuf Technol 60:1237–1246

    Article  Google Scholar 

  73. Rubio EM, Villeta M, Carou D, Saá A (2014) Comparative analysis of sustainable cooling systems in intermittent turning of magnesium pieces. Int J Precis Eng Manuf 15(5):929–940

    Article  Google Scholar 

  74. Bhowmick S, Alpas AT (2011) The role of diamond-like carbon coated drills on minimum quantity lubrication drilling of magnesium alloys. Surf Coat Technol 205(23–24):5302–5311

    Article  Google Scholar 

  75. Balout B, Songmene V, Masounave J (2007) An experimental study of dust generation during dry drilling of pre-cooled and pre-heated workpiece materials. J Manuf Process 9(1):23–34

    Article  Google Scholar 

  76. Weinert K, Lange M (2001) Machining of magnesium matrix composites. Adv Eng Mater 3(12):975–979

    Article  Google Scholar 

  77. Kheireddine AH, Ammouri AH, Lu T, Jawahir IS, Hamade RF (2013) An FEM Analysis with Experimental validation to study the hardness of in-process cryogenically cooled drilled holes in Mg AZ31b. Procedia CIRP 8:588–593

    Article  Google Scholar 

  78. Fang FZ, Lee LC, Liu XD (2005) Mean flank temperature measurement in high speed dry cutting of a magnesium alloy. J Mater Process Technol 167(1):119–123

    Article  Google Scholar 

  79. Pedersen W, Ramulu M (2006) Facing SiCp/Mg metal matrix composites with carbide tools. J Mater Process Technol 172:417–423

    Article  Google Scholar 

  80. Salahshoor M, Guo YB (2011) Cutting mechanics in high speed dry machining of biomedical magnesium–calcium alloy using internal state variable plasticity model. Int J Mach Tools Manuf 51(7–8):579–590

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Carou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carou, D., Rubio, E.M., Davim, J.P. (2015). Machinability of Magnesium and Its Alloys: A Review. In: Davim, J. (eds) Traditional Machining Processes. Materials Forming, Machining and Tribology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45088-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45088-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45087-1

  • Online ISBN: 978-3-662-45088-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics