Skip to main content

Electrophysiology and Pathophysiology of the Autonomic Nervous System of the Heart

  • Chapter
  • First Online:
Autonomic Innervation of the Heart

Abstract

The autonomic nervous system has an important role in the genesis, maintenance, and interruption of arrhythmias. Characterisation of the extrinsic and intrinsic cardiac nervous systems dates back to studies from the 1930s and ranges from recognition of anatomic relationships at the gross anatomic level to discovery of chemoreceptors, mechanoreceptors, and ganglionated plexuses lining specific regions along the veins, arteries, and cardiac chambers. However, with the increasing recognition of anatomic and functional relationships between the nervous system and the heart, also comes a litany of new questions. Specifically, studies to date have revealed the large degree of complexity. Furthermore, the clinical correlation of ex vivo cell-based and isolated perfusion models of the heart has been limited due to anatomic accessibility in recording simultaneous neuronal and cardiac electrophysiologic activity during in vivo electrophysiology studies. Partly because of these limitations, the study of autonomic cardiac electrophysiology remains in its early stages, with several studies pointing towards potential novel and elegant methods of treating electrophysiologic disease, but much remains to be done to translate these findings into clinical practice. In this chapter, we will briefly discuss anatomic aspects of the extrinsic and intrinsic cardiac nervous systems, how these various ganglia and nerves may integrate in modulating cardiac electrophysiology, and their relationships to a variety of electrophysiologic diseases. We will also discuss both current and future avenues of research as they relate to the fundamental understanding of how the cardiac-autonomic interface may offer itself to novel therapeutic targets for treating electrophysiologic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACEi:

Angiotensin-converting enzyme inhibitors

ACLS:

Advanced cardiac life support

AF:

Atrial fibrillation

ANS:

Autonomic nervous system

APD:

Action potential duration

ARI:

Activation recovery interval

BRS:

Baroreflex sensitivity

cAMP:

Cyclic adenosine monophosphate

EF:

Ejection fraction

ERP:

Effective refractory period

FHS:

Framingham heart study

HRV:

Heart rate variability

ICC:

Interstitial cells of Cajal

ICD:

Implantable cardioverter defibrillator

LAD:

Left anterior descending artery

MI:

Myocardial infarction

MIBG:

Metaiodobenzylguanidine

NADPH:

Nicotinamide adenine dinucleotide phosphate (NADPH)

PKA:

Protein kinase A

PVI:

Pulmonary vein isolation

SCD:

Sudden cardiac death

VF:

Ventricular fibrillation

VS:

Vagal stimulation

VT:

Ventricular tachycardia

References

  • Adamson PB, Kleckner KJ, Van Hout WL et al (2003) Cardiac resynchronization therapy improves heart rate variability in patients with symptomatic heart failure. Circulation 108:266–269

    Article  PubMed  Google Scholar 

  • Antzelevitch C (2002) Sympathetic modulation of the long QT syndrome. Eur Heart J 23:1246–1252

    Article  CAS  PubMed  Google Scholar 

  • Antzelevitch C, Shimizu W (2002) Cellular mechanisms underlying the long QT syndrome. Curr Opin Cardiol 17:43–51

    Article  PubMed  Google Scholar 

  • Asirvatham SJ, Kapa S (2009) Sleep apnea and atrial fibrillation: the autonomic link. J Am Coll Cardiol 54:2084–2086

    Article  PubMed  Google Scholar 

  • Brugada P, Brugada J (1992) Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome: a multicenter report. J Am Coll Cardiol 20:1391–1396

    Article  CAS  PubMed  Google Scholar 

  • Cao JM, Chen LS, KenKnight BH et al (2000a) Nerve sprouting and sudden cardiac death. Circ Res 86:816–821

    Article  CAS  PubMed  Google Scholar 

  • Cao JM, Fishbein MC, Han JB et al (2000b) Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation 101:1960–1969

    Article  CAS  PubMed  Google Scholar 

  • Chen PS, Chen LS, Cao JM et al (2001) Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res 50:409–416

    Article  CAS  PubMed  Google Scholar 

  • Chialvo DR, Gilmour RF Jr, Jalife J (1990) Low dimensional chaos in cardiac tissue. Nature 343:653–657

    Article  CAS  PubMed  Google Scholar 

  • Chiou CW, Eble JN, Zipes DP (1997) Efferent vagal innervation of the canine atria and sinus and atrioventricular nodes. The third fat pad. Circulation 95:2573–2584

    Article  CAS  PubMed  Google Scholar 

  • Daniel EE (2001) Physiology and pathophysiology of the interstitial cell of Cajal: from bench to bedside. III. Interaction of interstitial cells of Cajal with neuromediators: an interim assessment. Am J Physiol Gastrointest Liver Physiol 281:G1329–G1332

    CAS  PubMed  Google Scholar 

  • De Ferrari GM, Crijns HJGM, Borggrefe M et al (2011) Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J 32:847–855

    Article  PubMed  Google Scholar 

  • Dizon JM, Chen K, Bacchetta M et al (2009) A comparison of atrial arrhythmias after heart or double-lung transplantation at a single center: insights into the mechanism of post-operative atrial fibrillation. J Am Coll Cardiol 54:2043–2048

    Article  PubMed  Google Scholar 

  • Duan D (2009) Phenomics of cardiac chloride channels: the systematic study of chloride channel function in the heart. J Physiol 587:2163–2177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eliasson T, Augustinsson LE, Mannheimer C (1996) Spinal cord stimulation in severe angina pectoris— presentation of current studies, indications, and clinical experience. Pain 65:169–179

    Article  CAS  PubMed  Google Scholar 

  • Esler MD, Krum H, Sobotka PA et al (2010) Renal sympathetic denervation in patients with treatment-resistant hypertension (the Symplicity HTN-2 trial): a randomised controlled trial. Lancet 376:1903–1909

    Article  PubMed  Google Scholar 

  • Farrell TG, Bashir Y, Cripps T et al (1991) Risk stratification for arrhythmic events in post-infarction patients based on heart rate variability, ambulatory electrocardiographic variables and the signal-averaged electrocardiogram. J Am Coll Cardiol 18:687–697

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N, Bonaduce D, Abete P et al (1987) Role of increased cholinergic activity in reperfusion induced ventricular arrhythmias. Cardiovasc Res 21:279–285

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Wang W, Li YL et al (2005) Simvastatin therapy normalises sympathetic neural control in experimental heart failure: roles of angiotensin II type 1 receptors and NAD(P)H oxidase. Circulation 112:1763–1770

    Article  CAS  PubMed  Google Scholar 

  • Ghias M, Scherlag BJ, Lu Z et al (2009) The role of ganglionated plexi in apnea-related atrial fibrillation. J Am Coll Cardiol 54:2075–2083

    Article  PubMed  Google Scholar 

  • Hamdan MH, Barbera S, Kowal RC et al (2002) Effects of resynchronization therapy on sympathetic activity in patients with depressed ejection fraction and intra-ventricular conduction delay due to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 89:1047–1051

    Article  PubMed  Google Scholar 

  • Harvey RD, Clark CD, Hume JR (1990) Chloride current in mammalian cardiac myocytes. Novel mechanism for autonomic regulation of action potential duration and resting membrane potential. J Gen Physiol 95:1077–1102

    Article  CAS  PubMed  Google Scholar 

  • Hauptman PJ, Schwartz PJ, Gold MR et al (2012) Rationale and study design of the increase of vagal tone in heart failure study: INOVATE-HF. Am Heart J 163:954–962

    Article  PubMed  Google Scholar 

  • Hjalmarson A (1997) Effects of beta blockade on sudden cardiac death during acute myocardial infarction and the postinfarction period. Am J Cardiol 80:35J–39J

    Article  CAS  PubMed  Google Scholar 

  • Hohnloser SH, Klingenheben T, van de Loo A et al (1994) Reflex versus tonic vagal activity as a prognostic parameter in patients with sustained ventricular tachycardia or ventricular fibrillation. Circulation 89:1068–1073

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Scherlag BJ, Lin J et al (2007a) Ganglionated plexi modulate extrinsic cardiac autonomic nerve input: effects on sinus rate, atrioventricular conduction, refractoriness, and inducibility of atrial fibrillation. J Am Coll Cardiol 50:61–68

    Article  PubMed  Google Scholar 

  • Hou Y, Scherlag BJ, Lin J et al (2007b) Interactive atrial neural network: determining the connections between ganglionated plexi. Heart Rhythm 4:56–63

    Article  PubMed  Google Scholar 

  • Hull SS Jr, Evans AR, Vanoli E et al (1990) Heart rate variability before and after myocardial infarction in conscious dogs at high and low risk of sudden death. J Am Coll Cardiol 16:978–985

    Article  PubMed  Google Scholar 

  • Issa ZF, Ujhelyi MR, Hildebrand KR et al (2005a) Intrathecal clonidine reduces the incidence of ischemia- provoked ventricular arrhythmias in a canine postinfarction heart failure model. Heart Rhythm 2:1122–1127

    Article  PubMed  Google Scholar 

  • Issa ZF, Zhou X, Ujhelyi MR et al (2005b) Thoracic spinal cord stimulation reduces the risk of ischemic ventricular arrhythmias in a postinfarction heart failure canine model. Circulation 111:3217–3220

    Article  PubMed  Google Scholar 

  • Janse MJ, Schwartz PJ, Wilms-Schopman F et al (1985) Effects of unilateral stellate ganglion stimulation and ablation on electrophysiologic changes induced by acute myocardial ischemia in dogs. Circulation 72:585–595

    Article  CAS  PubMed  Google Scholar 

  • Kleiger RE, Miller JP, Bigger JT Jr et al (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59:256–262

    Article  CAS  PubMed  Google Scholar 

  • Kostin S, Popescu LM (2009) A distinct type of cell in myocardium: interstitial Cajal-like cells (ICLCs). J Cell Mol Med 13:295–308

    Article  CAS  PubMed  Google Scholar 

  • Krum H, Schlaich M, Whitbourn R et al (2009) Catheter-based renal sympathetic denervation for resistant hypertension: a multicenter safety and proof-of-principle cohort study. Lancet 373:1275–1281

    Article  PubMed  Google Scholar 

  • La Rovere MT, Bigger JT Jr, Marcus FI et al (1998) Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) investigators. Lancet 351:478–484

    Article  PubMed  Google Scholar 

  • Lopshire JC, Zhou X, Dusa C et al (2009) Spinal cord stimulation improves ventricular function and reduces ventricular arrhythmias in a canine postinfarction heart failure model. Circulation 120:286–294

    Article  PubMed  Google Scholar 

  • Mannheimer C, Eliasson T, Andersson B et al (1993) Effects of spinal cord stimulation in angina pectoris induced by pacing and possible mechanisms of action. Br Med J 307:477–480

    Article  CAS  Google Scholar 

  • Marron K, Wharton J, Sheppard MN et al (1995) Distribution, morphology, and neurochemistry of endocardial and epicardial nerve terminal arborizations in the human heart. Circulation 92:2343–2351

    Article  CAS  PubMed  Google Scholar 

  • Matsuo K, Kurita T, Inagaki M et al (1999) The circadian pattern of the development of ventricular fibrillation in patients with Brugada syndrome. Eur Heart J 20:465–470

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki T, Mitamura H, Miyoshi S et al (1996) Autonomic and antiarrhythmic drug modulation of ST segment elevation in patients with Brugada syndrome. J Am Coll Cardiol 27:1061–1070

    Article  CAS  PubMed  Google Scholar 

  • Nademanee K, Taylor R, Bailey WE et al (2000) Treating electrical storm: sympathetic blockade versus advanced cardiac life support-guided therapy. Circulation 102:742–747

    Article  CAS  PubMed  Google Scholar 

  • Nguyen BL, Fishbein MC, Chen LS et al (2009) Histopathological substrate for chronic atrial fibrillation in humans. Heart Rhythm 6:454–460

    Article  PubMed Central  PubMed  Google Scholar 

  • Noda T, Takaki H, Kurita T et al (2002) Gene-specific response of dynamic ventricular repolarization to sympathetic stimulation in LQT1, LQT2 and LQT3 forms of congenital long QT syndrome. Eur Heart J 23:975–983

    Article  CAS  PubMed  Google Scholar 

  • Odemuyiwa O, Poloniecki J, Malik M et al (1994) Temporal influences on the prediction of post-infarction mortality by heart rate variability: a comparison with the left ventricular ejection fraction. Br Heart J 71:521–527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patterson E, Po SS, Scherlag BJ et al (2005) Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm 2:624–631

    Article  PubMed  Google Scholar 

  • Paul M, Schafers M, Kies P et al (2006) Impact of sympathetic innervation on recurrent life-threatening arrhythmias in the follow-up of patients with idiopathic ventricular fibrillation. Eur J Nucl Med Mol Imaging 33:866–870

    Article  PubMed  Google Scholar 

  • Pitt B, Zannad F, Remme WJ et al (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341:709–717

    Article  CAS  PubMed  Google Scholar 

  • Pliquett RU, Cornish KG, Peuler JD et al (2003a) Simvastatin normalizes autonomic neural control in experimental heart failure. Circulation 107:2493–2498

    Article  CAS  PubMed  Google Scholar 

  • Pliquett RU, Cornish KG, Zucker IH (2003b) Statin therapy restores sympathovagal balance in experimental heart failure. J Appl Physiol 95:700–704

    CAS  PubMed  Google Scholar 

  • Po SS, Nakagawa H, Jackman WM (2009) Localisation of left atrial ganglionated plexi in patients with atrial fibrillation. J Cardiovasc Electrophysiol 20:1186–1189

    Article  PubMed  Google Scholar 

  • Ren C, Wang F, Li G et al (2008) Nerve sprouting suppresses myocardial I(to) and I(K1) channels and increases severity to ventricular fibrillation in rat. Auton Neurosci 144:22–29

    Article  CAS  PubMed  Google Scholar 

  • Rosenshtraukh L, Danilo P Jr, Anyukhovsky EP et al (1994) Mechanisms for vagal modulation of ventricular repolarization and of coronary occlusion-induced lethal arrhythmias in cats. Circ Res 75:722–732

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Waki K, Becker AE (2000) Left atrial myocardial extension onto pulmonary veins in humans: anatomic observations relevant for atrial arrhythmias. J Cardiovasc Electrophysiol 11:888–894

    Article  CAS  PubMed  Google Scholar 

  • Sanderson JE, Ibrahim B, Waterhouse D et al (1994) Spinal electrical stimulation for intractable angina: long-term clinical outcome and safety. Eur Heart J 15:810–814

    CAS  PubMed  Google Scholar 

  • Scherlag BJ, Yamanashi W, Patel U et al (2005a) Autonomically induced conversion of pulmonary vein focal firing into atrial fibrillation. J Am Coll Cardiol 45:1878–1886

    Article  PubMed  Google Scholar 

  • Scherlag BJ, Nakagawa H, Jackman WM et al (2005b) Electrical stimulation to identify neural elements on the heart: their role in atrial fibrillation. J Interv Card Electrophysiol 13(Suppl 1):37–42

    Article  PubMed  Google Scholar 

  • Scherlag BJ, Patterson E, Po SS (2006) The neural basis of atrial fibrillation. J Electrocardiol 39:S180–S183

    Article  PubMed  Google Scholar 

  • Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD (2009) Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med 361:932–934

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ (1984) Sympathetic imbalance and cardiac arrhythmias. In: Randall WC (ed) Nervous control of cardiovascular function. Oxford University Press, New York, pp 225–252

    Google Scholar 

  • Schwartz PJ, Billman GE, Stone HL (1984) Autonomic mechanisms in ventricular fibrillation induced by myocardial ischemia during exercise in dogs with healed myocardial infarction. An experimental preparation for sudden cardiac death. Circulation 69:790–800

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ, Vanoli E, Stramba-Badiale M et al (1988a) Autonomic mechanisms and sudden death. New insights from analysis of baroreceptor reflexes in conscious dogs with and without a myocardial infarction. Circulation 78:969–979

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ, Zaza A, Pala M et al (1988b) Baroreflex sensitivity and its evolution during the first year after myocardial infarction. J Am Coll Cardiol 12:629–636

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ, Locati EH, Moss AJ et al (1991) Left cardiac sympathetic denervation in the therapy of congenital long QT syndrome: a worldwide report. Circulation 84:503–511

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ, Priori SG, Cerrone M et al (2004) Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation 109:1826–1833

    Article  PubMed  Google Scholar 

  • Schwartz PJ, De Ferrari GM, Sanzo A et al (2008) Long term vagal stimulation in patients with advanced heart failure: first experience in man. Eur J Heart Fail 10:884–891

    Article  PubMed  Google Scholar 

  • Scott PA, Sandilands AJ, Morris GE et al (2008) Successful treatment of catecholaminergic polymorphic ventricular tachycardia with bilateral thoracoscopic sympathectomy. Heart Rhythm 5:1461–1463

    Article  CAS  PubMed  Google Scholar 

  • Stanton MS, Tuli MM, Radtke NL et al (1989) Regional sympathetic denervation after myocardial infarction in humans detected non-invasively using I-123- metaiodobenzylguanidine. J Am Coll Cardiol 14:1519–1526

    Article  CAS  PubMed  Google Scholar 

  • Taggart P, Sutton P, Lab M et al (1990) Interplay between adrenaline and interbeat interval on ventricular repolarization in intact heart in vivo. Cardiovasc Res 24:884–895

    Article  CAS  PubMed  Google Scholar 

  • Taggart P, Sutton P, Chalabi Z et al (2003) Effect of adrenergic stimulation on action potential duration restitution in humans. Circulation 107:285–289

    Article  CAS  PubMed  Google Scholar 

  • Tan AY, Li H, Wachsmann-Hogiu S et al (2006) Autonomic innervation and segmental muscular disconnections at the human pulmonary vein-atrial junction: implications for catheter ablation of atrial-pulmonary vein junction. J Am Coll Cardiol 48:132–143

    Article  PubMed  Google Scholar 

  • Terrenoire C, Clancy CE, Cormier JW et al (2005) Autonomic control of cardiac action potentials: role of potassium channel kinetics in response to sympathetic stimulation. Circ Res 96:e25–e34

    Article  CAS  PubMed  Google Scholar 

  • Vyas H, Johnson K, Houlihan R et al (2006) Acquired long QT syndrome secondary to cesium chloride supplement. J Altern Complement Med 12:1011–1014

    Article  PubMed  Google Scholar 

  • Walsh KB, Kass RS (1991) Distinct voltage-dependent regulation of a heart-delayed IK by protein kinases A and C. Am J Physiol 261:C1081–C1090

    CAS  PubMed  Google Scholar 

  • Ward SM, Sanders KM (2001) Physiology and pathophysiology of the interstitial cell of Cajal: from bench to bedside. I. Functional development and plasticity of interstitial cells of Cajal networks. Am J Physiol Gastrointest Liver Physiol 281:G602–G611

    CAS  PubMed  Google Scholar 

  • Wichter T, Matheja P, Eckardt L et al (2002) Cardiac autonomic dysfunction in Brugada syndrome. Circulation 105:702–706

    Article  PubMed  Google Scholar 

  • Wilde AA, Bhuiyan ZA, Crotti L et al (2008) Left cardiac sympathetic denervation for catecholaminergic polymorphic ventricular tachycardia. N Engl J Med 358:2024–2029

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka K, Gao DW, Chin M et al (2000) Heterogeneous sympathetic innervation influences local myocardial repolarization in normally perfused rabbit hearts. Circulation 101:1060–1066

    Article  CAS  PubMed  Google Scholar 

  • Zhang JF, Robinson RB, Siegelbaum SA (1992) Sympathetic neurones mediate developmental change in cardiac sodium channel gating through long-term neurotransmitter action. Neuron 9:97–103

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Popovic ZB, Bibevski S et al (2009) Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail 2:692–699

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Cao JM, Tebb ZD et al (2001) Modulation of QT interval by cardiac sympathetic nerve sprouting and the mechanisms of ventricular arrhythmia in a canine model of sudden cardiac death. J Cardiovasc Electrophysiol 12:1068–1073

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Scherlag BJ, Edwards J et al (2007) Gradients of atrial refractoriness and inducibility of atrial fibrillation due to stimulation of ganglionated plexi. J Cardiovasc Electrophysiol 18:83–90

    Article  PubMed  Google Scholar 

  • Zipes DP (1994) Autonomic modulation of cardiac arrhythmias. In: Zipes DP, Jalife J (eds) Cardiac electrophysiology: from cell to bedside, 2nd edn. WB Saunders Co, Philadelphia, pp 365–395

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo de Asmundis MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Asmundis, C., Van Camp, G., Brugada, P. (2015). Electrophysiology and Pathophysiology of the Autonomic Nervous System of the Heart. In: Slart, R., Tio, R., Elsinga, P., Schwaiger, M. (eds) Autonomic Innervation of the Heart. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45074-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45074-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45073-4

  • Online ISBN: 978-3-662-45074-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics