Skip to main content

Combination of Chemotherapy and Cytokine Therapy in Treatment of Cancers

  • Chapter
  • First Online:
Cancer Immunology

Abstract

Increasing evidence suggests that immune responses participate in the control of cancer growth and that the immune system can be manipulated in different ways to recognize and attack tumors. Cytokines are proteins produced by monocytes, macrophages, and lymphocytes, which regulate proliferation, differentiation and functional activation of immune cells, playing a key role in this response. A number of cytokines (e.g., interleukin (IL)-2, IL-4, IL-6, IL-7, IL-12, IL-15, and IL-18; granulocyte macrophage colony-stimulating factor (GM-CSF); granulocyte colony-stimulating factor (G-CSF); tumor necrosis factor (TNF)-α; macrophage colony-stimulating factor (M-CSF or CSF-1); and interferon (IFN)-γ) demonstrated their ability to induce immunity against cancer. However, systemic administration of recombinant cytokines may induce unaffordable toxicity; in addition, the immunosuppressive milieu clearly limits its potential efficacy. In this context, protocols combining chemotherapy and immunotherapy with cytokines demonstrated potential for therapeutic synergy. For example, cyclophosphamide, gemcitabine, paclitaxel, and doxorubicin have been used for this purpose. Moreover, new studies indicate that reducing the dose of conventional chemotherapy could act in synergy to generate immunity against many tumors. This chapter provides an overview of the evidence that supports the rationale for the use of combined therapy as a strategy to achieve specific antitumoral immune response in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woude GF, Kelloff GJ, Ruddon RW, Koo HM, Sigman CC, Barrett JC, et al. Reanalysis of cancer drugs: old drugs, new tricks. Clin Cancer Res. 2004;10(11):3897–907.

    Article  Google Scholar 

  2. Yamaguchi S, Ohguri T, Imada H, Yahara K, Moon SD, Higure A, et al. Multimodal approaches including three-dimensional conformal re-irradiation for recurrent or persistent esophageal cancer: preliminary results. J Radiat Res. 2011;52(6):812–20.

    Article  PubMed  Google Scholar 

  3. Rivoltini L, Carrabba M, Huber V, Castelli C, Novellino L, Dalerba P, et al. Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction. Immunol Rev. 2002;188:97–113.

    Article  CAS  PubMed  Google Scholar 

  4. Copier J, Dalgleish AG, Britten CM, Finke LH, Gaudernack G, Gnjatic S, et al. Improving the efficacy of cancer immunotherapy. Eur J Cancer. 2009;45(8):1424–31.

    Article  CAS  PubMed  Google Scholar 

  5. Nowak AK, Robinson BW, Lake RA. Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res. 2003;63(15):4490–6.

    CAS  PubMed  Google Scholar 

  6. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  7. Sinicrope FA, Rego RL, Ansell SM, Knutson KL, Foster NR, Sargent DJ. Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology. 2009;137(4):1270–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol. 2007;25(18):2586–93.

    Article  PubMed  Google Scholar 

  9. Hohenberger P, Gretschel S. Gastric cancer. Lancet. 2003;362(9380):305–15.

    Article  PubMed  Google Scholar 

  10. Shenoy AK, Fisher RC, Butterworth EA, Pi L, Chang LJ, Appelman HD, et al. Transition from colitis to cancer: high Wnt activity sustains the tumor-initiating potential of colon cancer stem cell precursors. Cancer Res. 2012;72(19):5091–100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lewis JS, Landers RJ, Underwood JC, Harris AL, Lewis CE. Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol. 2000;192(2):150–8.

    Article  CAS  PubMed  Google Scholar 

  12. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  13. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71–8.

    Article  CAS  PubMed  Google Scholar 

  14. Heuff G, Oldenburg HS, Boutkan H, Visser JJ, Beelen RH, Van Rooijen N, et al. Enhanced tumour growth in the rat liver after selective elimination of Kupffer cells. Cancer Immunol Immunother. 1993;37(2):125–30.

    Article  CAS  PubMed  Google Scholar 

  15. Cho Y, Miyamoto M, Kato K, Fukunaga A, Shichinohe T, Kawarada Y, et al. CD4+ and CD8+ T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Cancer Res. 2003;63(7):1555–9.

    CAS  PubMed  Google Scholar 

  16. Clemente CG, Mihm Jr MC, Bufalino R, Zurrida S, Collini P, Cascinelli N. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer. 1996;77(7):1303–10.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203–13.

    Article  CAS  PubMed  Google Scholar 

  18. Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res. 1970;13:1–27.

    CAS  PubMed  Google Scholar 

  19. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8.

    Article  CAS  PubMed  Google Scholar 

  20. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60.

    Article  CAS  PubMed  Google Scholar 

  21. Nagaraj S, Collazo M, Corzo CA, Youn JI, Ortiz M, Quiceno D, et al. Regulatory myeloid suppressor cells in health and disease. Cancer Res. 2009;69(19):7503–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531–62.

    Article  CAS  PubMed  Google Scholar 

  23. Thompson C, Powrie F. Regulatory T cells. Curr Opin Pharmacol. 2004;4(4):408–14.

    Article  CAS  PubMed  Google Scholar 

  24. Zou W. Regulatory T, cells, tumour immunity and immunotherapy. Nat Rev Immunol. 2006;6(4):295–307.

    Article  CAS  PubMed  Google Scholar 

  25. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942–9.

    Article  CAS  PubMed  Google Scholar 

  26. Rabinovich GA, Rubinstein N, Matar P, Rozados V, Gervasoni S, Scharovsky GO. The antimetastatic effect of a single low dose of cyclophosphamide involves modulation of galectin-1 and Bcl-2 expression. Cancer Immunol Immunother. 2002;50(11):597–603.

    Article  CAS  PubMed  Google Scholar 

  27. Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F, et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother. 2007;56(5):641–8.

    Article  CAS  PubMed  Google Scholar 

  28. Proietti E, Greco G, Garrone B, Baccarini S, Mauri C, Venditti M, et al. Importance of cyclophosphamide-induced bystander effect on T cells for a successful tumor eradication in response to adoptive immunotherapy in mice. J Clin Invest. 1998;101(2):429–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Nagaraj S, Gabrilovich DI. Myeloid-derived suppressor cells in human cancer. Cancer J. 2010;16(4):348–53.

    Article  CAS  PubMed  Google Scholar 

  31. Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev. 2008;222:162–79.

    Article  CAS  PubMed  Google Scholar 

  32. Sumida K, Wakita D, Narita Y, Masuko K, Terada S, Watanabe K, et al. Anti-IL-6 receptor mAb eliminates myeloid-derived suppressor cells and inhibits tumor growth by enhancing T-cell responses. Eur J Immunol. 2012;42(8):2060–72.

    Google Scholar 

  33. Nagaraj S, Youn JI, Weber H, Iclozan C, Lu L, Cotter MJ, et al. Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin Cancer Res. 2010;16(6):1812–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 2010;70(8):3052–61.

    Article  CAS  PubMed  Google Scholar 

  35. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10(9):909–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Hodi FS, Butler M, Oble DA, Seiden MV, Haluska FG, Kruse A, et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci U S A. 2008;105(8):3005–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Grosso JF, Jure-Kunkel MN. CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun. 2013;13:5.

    PubMed Central  PubMed  Google Scholar 

  39. Ugel S, Delpozzo F, Desantis G, Papalini F, Simonato F, Sonda N, et al. Therapeutic targeting of myeloid-derived suppressor cells. Curr Opin Pharmacol. 2009;9(4):470–81.

    Article  CAS  PubMed  Google Scholar 

  40. Kaneno R, Shurin GV, Kaneno FM, Naiditch H, Luo J, Shurin MR. Chemotherapeutic agents in low noncytotoxic concentrations increase immunogenicity of human colon cancer cells. Cell Oncol (Dordr). 2011;34(2):97–106.

    Article  CAS  Google Scholar 

  41. Decatris M, Santhanam S, O’Byrne K. Potential of interferon-alpha in solid tumours: part 1. BioDrugs. 2002;16(4):261–81.

    Article  CAS  PubMed  Google Scholar 

  42. Santhanam S, Decatris M, O’Byrne K. Potential of interferon-alpha in solid tumours: part 2. BioDrugs. 2002;16(5):349–72.

    Article  CAS  PubMed  Google Scholar 

  43. Malek TR. The biology of interleukin-2. Annu Rev Immunol. 2008;26:453–79.

    Article  CAS  PubMed  Google Scholar 

  44. Jilaveanu LB, Aziz SA, Kluger HM. Chemotherapy and biologic therapies for melanoma: do they work? Clin Dermatol. 2009;27(6):614–25.

    Article  PubMed  Google Scholar 

  45. Brunda MJ, Luistro L, Warrier RR, Wright RB, Hubbard BR, Murphy M, et al. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med. 1993;178(4):1223–30.

    Article  CAS  PubMed  Google Scholar 

  46. Cohen J. IL-12 deaths: explanation and a puzzle. Science. 1995;270:908.

    Article  CAS  PubMed  Google Scholar 

  47. Mazzolini G, Narvaiza I, Perez-Diez A, Rodriguez-Calvillo M, Qian C, Sangro B, et al. Genetic heterogeneity in the toxicity to systemic adenoviral gene transfer of interleukin-12. Gene Ther. 2001;8(4):259–67.

    Article  CAS  PubMed  Google Scholar 

  48. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A. 1993;90(8):3539–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kirkwood JM, Ibrahim JG, Sosman JA, Sondak VK, Agarwala SS, Ernstoff MS, et al. High-dose interferon Alfa-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: results of intergroup trial E1694/S9512/C509801. J Clin Oncol. 2001;19(9):2370–80.

    CAS  PubMed  Google Scholar 

  50. Forni G, Fujiwara H, Martino F, Hamaoka T, Jemma C, Caretto P, et al. Helper strategy in tumor immunology: expansion of helper lymphocytes and utilization of helper lymphokines for experimental and clinical immunotherapy. Cancer Metastasis Rev. 1988;7(4):289–309.

    Article  CAS  PubMed  Google Scholar 

  51. Sangro B, Mazzolini G, Ruiz J, Herraiz M, Quiroga J, Herrero I, et al. Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors. J Clin Oncol. 2004;22(8):1389–97.

    Article  CAS  PubMed  Google Scholar 

  52. Sipuleucel T. APC 8015, APC-8015, prostate cancer vaccine – Dendreon. Drugs R&D. 2006;7(3):197.

    Article  Google Scholar 

  53. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30.

    Article  PubMed  Google Scholar 

  54. Ramakrishnan R, Assudani D, Nagaraj S, Hunter T, Cho HI, Antonia S, et al. Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J Clin Invest. 2010;120(4):1111–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Lake RA, Robinson BW. Immunotherapy and chemotherapy – a practical partnership. Nat Rev Cancer. 2005;5(5):397–405.

    Article  CAS  PubMed  Google Scholar 

  56. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Binotto G, Trentin L, Semenzato G. Ifosfamide and cyclophosphamide: effects on immunosurveillance. Oncology. 2003;65 Suppl 2:17–20.

    Article  CAS  PubMed  Google Scholar 

  58. Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med. 2005;202(12):1691–701.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Nowak AK, Lake RA, Marzo AL, Scott B, Heath WR, Collins EJ, et al. Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J Immunol. 2003;170(10):4905–13.

    Article  CAS  PubMed  Google Scholar 

  60. Sevko A, Michels T, Vrohlings M, Umansky L, Beckhove P, Kato M, et al. Antitumor effect of Paclitaxel is mediated by inhibition of myeloid-derived suppressor cells and chronic inflammation in the spontaneous melanoma model. J Immunol. 2013;190(5):2464–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Bracci L, Moschella F, Sestili P, La Sorsa V, Valentini M, Canini I, et al. Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expression, B-cell and T-cell homeostatic proliferation, and specific tumor infiltration. Clin Cancer Res. 2007;13(2 Pt 1):644–53.

    Article  CAS  PubMed  Google Scholar 

  62. Matar P, Rozados VR, Gervasoni SI, Scharovsky GO. Th2/Th1 switch induced by a single low dose of cyclophosphamide in a rat metastatic lymphoma model. Cancer Immunol Immunother. 2002;50(11):588–96.

    Article  CAS  PubMed  Google Scholar 

  63. Malvicini M, Rizzo M, Alaniz L, Pinero F, Garcia M, Atorrasagasti C, et al. A novel synergistic combination of cyclophosphamide and gene transfer of interleukin-12 eradicates colorectal carcinoma in mice. Clin Cancer Res. 2009;15(23):7256–65.

    Article  CAS  PubMed  Google Scholar 

  64. Sone S, Ogura T. Local interleukin-2 therapy for cancer, and its effector induction mechanisms. Oncology. 1994;51(2):170–6.

    Article  CAS  PubMed  Google Scholar 

  65. Ehrke MJ, Verstovsek S, Zaleskis G, Ho RL, Ujhazy P, Maccubbin DL, et al. Specific anti-EL4-lymphoma immunity in mice cured 2 years earlier with doxorubicin and interleukin-2. Cancer Immunol Immunother. 1996;42(4):221–30.

    Article  CAS  PubMed  Google Scholar 

  66. Ewens A, Luo L, Berleth E, Alderfer J, Wollman R, Hafeez BB, et al. Doxorubicin plus interleukin-2 chemoimmunotherapy against breast cancer in mice. Cancer Res. 2006;66(10):5419–26.

    Article  CAS  PubMed  Google Scholar 

  67. Ehrke MJ, Verstovsek S, Maccubbin DL, Ujhazy P, Zaleskis G, Berleth E, et al. Protective specific immunity induced by doxorubicin plus TNF-alpha combination treatment of EL4 lymphoma-bearing C57BL/6 mice. Int J Cancer. 2000;87(1):101–9.

    Article  CAS  PubMed  Google Scholar 

  68. Mihich E, Ehrke MJ. Anticancer drugs plus cytokines: immunodulation based therapies of mouse tumors. Int J Immunopharmacol. 2000;22(12):1077–81.

    Article  CAS  PubMed  Google Scholar 

  69. Regenass U, Muller M, Curschellas E, Matter A. Anti-tumor effects of tumor necrosis factor in combination with chemotherapeutic agents. Int J Cancer. 1987;39(2):266–73.

    Article  CAS  PubMed  Google Scholar 

  70. Jinushi M, Hodi FS, Dranoff G. Enhancing the clinical activity of granulocyte-macrophage colony-stimulating factor-secreting tumor cell vaccines. Immunol Rev. 2008;222:287–98.

    Article  CAS  PubMed  Google Scholar 

  71. He Q, Li J, Yin W, Song Z, Zhang Z, Yi T, et al. Low-dose paclitaxel enhances the anti-tumor efficacy of GM-CSF surface-modified whole-tumor-cell vaccine in mouse model of prostate cancer. Cancer Immunol Immunother. 2011;60(5):715–30.

    Article  CAS  PubMed  Google Scholar 

  72. Machiels JP, Reilly RT, Emens LA, Ercolini AM, Lei RY, Weintraub D, et al. Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res. 2001;61(9):3689–97.

    CAS  PubMed  Google Scholar 

  73. Trinchieri G. Immunobiology of interleukin-12. Immunol Res. 1998;17(1–2):269–78.

    Article  CAS  PubMed  Google Scholar 

  74. Melero I, Mazzolini G, Narvaiza I, Qian C, Chen L, Prieto J. IL-12 gene therapy for cancer: in synergy with other immunotherapies. Trends Immunol. 2001;22(3):113–5.

    Article  CAS  PubMed  Google Scholar 

  75. Malvicini M, Alaniz L, Juan B, Mariana G, Flavia P, Esteban F, et al. Single low-dose cyclophosphamide combined with interleukin-12 gene therapy is superior to a metronomic schedule in inducing immunity against colorectal carcinoma in mice. Oncoimmunology. 2012;1(8):1–10.

    Google Scholar 

  76. Torrero M, Li S. Treatment of SCCVII tumors with systemic chemotherapy and Interleukin-12 gene therapy combination. Methods Mol Biol. 2008;423:339–49.

    Article  CAS  PubMed  Google Scholar 

  77. Fossa SD, Martinelli G, Otto U, Schneider G, Wander H, Oberling F, et al. Recombinant interferon alfa-2a with or without vinblastine in metastatic renal cell carcinoma: results of a European multi-center phase III study. Ann Oncol. 1992;3(4):301–5.

    CAS  PubMed  Google Scholar 

  78. Motzer RJ, Murphy BA, Bacik J, Schwartz LH, Nanus DM, Mariani T, et al. Phase III trial of interferon alfa-2a with or without 13-cis-retinoic acid for patients with advanced renal cell carcinoma. J Clin Oncol. 2000;18(16):2972–80.

    CAS  PubMed  Google Scholar 

  79. Aass N, De Mulder PH, Mickisch GH, Mulders P, van Oosterom AT, van Poppel H, et al. Randomized phase II/III trial of interferon Alfa-2a with and without 13-cis-retinoic acid in patients with progressive metastatic renal cell Carcinoma: the European Organisation for Research and Treatment of Cancer Genito-Urinary Tract Cancer Group (EORTC 30951). J Clin Oncol. 2005;23(18):4172–8.

    Article  CAS  PubMed  Google Scholar 

  80. Haarstad H, Jacobsen AB, Schjolseth SA, Risberg T, Fossa SD. Interferon-alpha, 5-FU and prednisone in metastatic renal cell carcinoma: a phase II study. Ann Oncol. 1994;5(3):245–8.

    CAS  PubMed  Google Scholar 

  81. Elias L, Blumenstein BA, Kish J, Flanigan RC, Wade JL, Lowe BA, et al. A phase II trial of interferon-alpha and 5-fluorouracil in patients with advanced renal cell carcinoma. A Southwest Oncology Group Study. Cancer. 1996;78(5):1085–8.

    Article  CAS  PubMed  Google Scholar 

  82. Atzpodien J, Kirchner H, Hanninen EL, Deckert M, Fenner M, Poliwoda H. Interleukin-2 in combination with interferon-alpha and 5-fluorouracil for metastatic renal cell cancer. Eur J Cancer. 1993;29A Suppl 5:S6–8.

    Article  PubMed  Google Scholar 

  83. Sella A, Kilbourn RG, Gray I, Finn L, Zukiwski AA, Ellerhorst J, et al. Phase I study of interleukin-2 combined with interferon-alpha and 5-fluorouracil in patients with metastatic renal cell cancer. Cancer Biother. 1994;9(2):103–11.

    Article  CAS  PubMed  Google Scholar 

  84. Dutcher JP, Logan T, Gordon M, Sosman J, Weiss G, Margolin K, et al. Phase II trial of interleukin 2, interferon alpha, and 5-fluorouracil in metastatic renal cell cancer: a cytokine working group study. Clin Cancer Res. 2000;6(9):3442–50.

    CAS  PubMed  Google Scholar 

  85. Yamashita T, Arai K, Sunagozaka H, Ueda T, Terashima T, Mizukoshi E, et al. Randomized, phase II study comparing interferon combined with hepatic arterial infusion of fluorouracil plus cisplatin and fluorouracil alone in patients with advanced hepatocellular carcinoma. Oncology. 2011;81(5–6):281–90.

    Article  CAS  PubMed  Google Scholar 

  86. Kasai K, Ushio A, Kasai Y, Sawara K, Miyamoto Y, Oikawa K, et al. Therapeutic efficacy of combination therapy with intra-arterial 5-fluorouracil and systemic pegylated interferon alpha-2b for advanced hepatocellular carcinoma with portal venous invasion. Cancer. 2012;118(13):3302–10.

    Article  CAS  PubMed  Google Scholar 

  87. Schmidt J, Abel U, Debus J, Harig S, Hoffmann K, Herrmann T, et al. Open-label, multicenter, randomized phase III trial of adjuvant chemoradiation plus interferon Alfa-2b versus fluorouracil and folinic acid for patients with resected pancreatic adenocarcinoma. J Clin Oncol. 2012;30(33):4077–83.

    Article  CAS  PubMed  Google Scholar 

  88. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Asakuma M, Yamamoto M, Wada M, Ryuge S, Katono K, Yokoba M, et al. Phase I trial of irinotecan and amrubicin with granulocyte colony-stimulating factor support in extensive-stage small-cell lung cancer. Cancer Chemother Pharmacol. 2012;69(6):1529–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo D. Mazzolini MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Malvicini, M., Rizzo, M.M., Alaniz, L., Mazzolini, G.D. (2015). Combination of Chemotherapy and Cytokine Therapy in Treatment of Cancers. In: Rezaei, N. (eds) Cancer Immunology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44946-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44946-2_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44945-5

  • Online ISBN: 978-3-662-44946-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics