Skip to main content

Computing Accurate Morse-Smale Complexes from Gradient Vector Fields

  • Conference paper
  • First Online:
Topological and Statistical Methods for Complex Data

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 2271 Accesses

Abstract

Approaches for computing geometrically accurate Morse-Smale complexes with discrete Morse theory utilize a probabilistic approach to mitigate the negative impact of restricting flow to the edges of a mesh. The most accurate technique (Gyulassy et al., IEEE Trans Vis Comput Graph 18:2014–2022, 2012) builds a discrete gradient field by computing the probability that a cell belongs to any ascending manifold. The limiting factor to the scalability and parallelism in this approach is the reliance on processing cells in order of increasing function values, in practice, involving a global sort of the data. In this paper, we generalize the approach to operate on gradient vector fields, replacing the sorted ordering with a dependency graph. We present a technique to convert a continuous gradient field to a dependency graph with weights on edges, and adapt the accurate Morse-Smale complex algorithm to this setting. We demonstrate the utility of our technique by computing accurate segmentations for both gradient vector fields obtained by sampling scalar functions as well as rotation-free vector fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bremer, P.-T., Weber, G., Pascucci, V., Day, M., Bell, J.: Analyzing and tracking burning structures in lean premixed hydrogen flames. IEEE Trans. Vis. Comput. Graph. 16(2), 248–260 (2010)

    Article  Google Scholar 

  2. Cayley, A.: On contour and slope lines. Lond. Edinb. Dublin Philos. Mag. J. Sci. XVIII, 264–268 (1859)

    Google Scholar 

  3. Chorin, A.J., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  4. Chen, G., Mischaikow, K., Laramee, R.S., Zhang, E.: Efficient Morse decompositions of vector fields. IEEE Trans. Vis. Comput. Grap. 14(4), 848–862 (2008)

    Article  Google Scholar 

  5. Edelsbrunner, H., Mücke, E.P.: Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graph. 9, 66–104 (1990)

    Article  MATH  Google Scholar 

  6. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, FOCS ’00, pp. 454–463. IEEE Computer Society, Washington (2000)

    Google Scholar 

  7. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete Comput. Geom. 30, 87–107 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Forman, R.: A user’s guide to discrete Morse theory. In: Séminare Lotharinen de Combinatore, vol. 48 (2002)

    Google Scholar 

  9. Gyulassy, A., Duchaineau, M., Natarajan, V., Pascucci, V., Bringa, E., Higginbotham, A., Hamann, B.: Topologically clean distance fields. IEEE Trans. Comput. Graph. Vis. 13(6), 1432–1439 (2007)

    Article  Google Scholar 

  10. Gyulassy, A., Bremer, P.-T., Pascucci, V., Hamann, B.: A practical approach to Morse-Smale complex computation: scalability and generality. IEEE Trans. Vis. Comput. Graph. 14(6), 1619–1626 (2008)

    Article  Google Scholar 

  11. Gyulassy, A., Bremer, P.T., Pascucci, V.: Computing Morse-Smale complexes with accurate geometry. IEEE Trans. Vis. Comput. Graph. 18(12), 2014–2022 (2012)

    Article  Google Scholar 

  12. Helman, J., Hesselink, L.: Representation and display of vector field topology in fluid flow data sets. IEEE Comput. 22(8), 27–36 (1989)

    Article  Google Scholar 

  13. Kasten, J., Reininghaus, J., Hotz, I., Hege, H.-C.: Two-dimensional time-dependent vortex regions based on the acceleration magnitude. IEEE Trans. Vis. Comput. Graph. 17(12), 2080–2087 (2011)

    Article  Google Scholar 

  14. King, H., Knudson, K., Neza, M.: Generating discrete Morse functions from point data. Exp. Math. 14(4), 435–444 (2005)

    Article  MATH  Google Scholar 

  15. Laney, D., Bremer, P.-T., Mascarenhas, A., Miller, P., Pascucci, V.: Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities. IEEE Trans. Vis. Comput. Graph. 12(5), 1052–1060 (2006)

    Article  Google Scholar 

  16. Levine, J.A., Jadhav, S., Bhatia, H., Pascucci, V., Bremer, P.-T.: A quantized boundary representation of 2D flow. Comput. Graph. Forum (EuroVis Proc.) 31(3pt1), 945–954 (2012)

    Google Scholar 

  17. Lewiner, T.: Constructing discrete Morse functions. Master’s thesis, Department of Mathematics, PUC-Rio (2002)

    Google Scholar 

  18. Maxwell, J.C.: On hills and dales. Lond. Edinb. Dublin Philos. Mag. J. Sci. XL, 421–427 (1870)

    Google Scholar 

  19. Polthier, K., Preuß, E.: Identifying vector fields singularities using a discrete Hodge decomposition. In: Hege, H.C., Polthier, K. (eds.) Mathematical Visualization III, pp. 112–134. Springer Verlag (2003)

    Google Scholar 

  20. Reininghaus, J., Hotz, I.: Combinatorial 2d vector field topology extraction and simplification. In: Topological Methods in Data Analysis and Visualization: Theory, Algorithms, and Applications. Mathematics and Visualization, pp. 103–114. Springer, Berlin (2011)

    Google Scholar 

  21. Reininghaus, J., Hotz, I.: Computational discrete Morse theory for divergence-free 2d vector fields. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds.) Topological Methods in Data Analysis and Visualization II. Mathematics and Visualization, pp. 3–14. Springer, Berlin/Heidelberg (2012)

    Chapter  Google Scholar 

  22. Reininghaus, J., Lowen, C., Hotz, I.: Fast combinatorial vector field topology. IEEE Trans. Vis. Comput. Graph. 17, 1433–1443 (2011)

    Article  Google Scholar 

  23. Reininghaus, J., Gunther, D., Hotz, I., Weinkauf, T., Seidel, H.-P.: Combinatorial gradient fields for 2d images with empirically convergent separatrices, arxiv, 1(1208.6523) (2012)

    Google Scholar 

  24. Robins, V., Wood, P., Sheppard, A.: Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646–1658 (2011)

    Article  Google Scholar 

  25. Shivashankar, N., Natarajan, V.: Parallel computation of 3d Morse-Smale complexes. Comput. Graph. Forum 31(3pt1), 965–974 (2012)

    Google Scholar 

  26. Shivashankar, N., Natarajan, V.: Parallel computation of 3D Morse-Smale complexes. Comp. Graph. Forum 31(3pt1), 965–974 (2012). doi:10.1111/j.1467-8659.2012.03089.x

    Google Scholar 

  27. Sousbie, T.: The persistent cosmic web and its filamentary structure - i. Theory and implementation. Mon. Not. R. Astron. Soc. 414(1), 350–383 (2011)

    Article  Google Scholar 

  28. Sousbie, T., Colombi, S., Pichon, C.: The fully connected n-dimensional skeleton: probing the evolution of the cosmic web. Mon. Not. R. Astron. Soc. 393(2), 457–477 (2009)

    Article  Google Scholar 

  29. Szymczak, A., Zhang, E.: Robust Morse decompositions of piecewise constant vector fields. IEEE Trans. Vis. Comput. Grap. 18(6), 938–951 (2012)

    Article  Google Scholar 

  30. Tong, Y., Lombeyda, S., Hirani, A.N., Desbrun, M.: Discrete multiscale vector field decomposition. ACM Trans. Graph. 22(3), 445–452 (2003)

    Article  Google Scholar 

  31. Wiebel, A.: Feature detection in vector fields using the Helmholtz-Hodge decomposition. Diplomarbeit, University of Kaiserslautern (2004)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by NSF OCI-0906379, NSF OCI-0904631, DOE/NEUP 120341, DOE/MAPD DESC000192, DOE/LLNL B597476, DOE/Codesign P01180734, and DOE/SciDAC DESC0007446.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Gyulassy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gyulassy, A., Bhatia, H., Bremer, PT., Pascucci, V. (2015). Computing Accurate Morse-Smale Complexes from Gradient Vector Fields. In: Bennett, J., Vivodtzev, F., Pascucci, V. (eds) Topological and Statistical Methods for Complex Data. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44900-4_12

Download citation

Publish with us

Policies and ethics