Skip to main content

Permeable Pavements and Storm Water Management

  • Chapter
  • First Online:
Climate Change, Energy, Sustainability and Pavements

Part of the book series: Green Energy and Technology ((GREEN))

  • 1967 Accesses

Abstract

The purpose of this book chapter is to summarize the recent literature on permeable pavements and related systems, highlighting current trends in research and practice, and to recommend future areas of research and development. Note that permeable pavements are also known as porous and pervious pavements depending on the industry and country of origin. The development of permeable pavements using concrete pavers as an integral part of sustainable drainage systems is reviewed in the context of traditional and modern urban drainage. Emphasis is given to detailed design, maintenance and water quality control aspects. The advantages and disadvantages of different pavement surfaces are discussed with the help of recent and relevant case study findings. The latest innovations are explained, and their potential for further research work is outlined. Current research regarding the development of systems combining geothermal heating and cooling, water treatment and recycling, and pavement is promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbot, C. L., & Comino-Mateos, L. (2003). In-situ hydraulic performance of a permeable pavement sustainable urban drainage system. Journal of the Chartered Institution of Water and Environmental Management, 17, 187–190.

    Article  Google Scholar 

  • Andersen, C. T., Foster, I. D. L., & Pratt, C. J. (1999). The role of urban surfaces (permeable pavements) in regulating drainage and evaporation: Development of a laboratory simulation experiment. Hydrologic Process, 13, 597–609.

    Article  Google Scholar 

  • Backstrom, M. (2000). Ground temperature in porous pavement during freezing and thawing. Journal of Transportation Engineering, 126, 375–381.

    Article  Google Scholar 

  • Balkema, A. J., Preisig, H. A., Otterpohl, R., & Lambert, F. J. D. (2002). Indicators for the sustainability assessment of wastewater treatment systems. Urban Water, 4, 153–161.

    Article  Google Scholar 

  • Barrell, R. A. E., Hunter, P. R., & Nichols, G. (2000). Microbiological standards for water and their relationship to health risk. Communicable Disease and Public Health, 3, 8–13.

    Google Scholar 

  • Bean, E. Z., Hunt, W. F., & Bidelspach, D. A. (2004). Study on the surface infiltration rate of permeable pavements. In G. Sehlke, D. F. Hayes, & D. K. Stevens (Eds.), Proceedings of the American Society of Civil Engineers and EWRI 2004 World Water and Environmental Resources Congress (27/06-01/07/2004). USA: Salt Lake City, UT.

    Google Scholar 

  • Booth, D. B., & Leavitt, J. (1999). Field evaluation of permeable pavement systems for improved storm water management. American Planning Association Journal, 65, 314–325.

    Article  Google Scholar 

  • Brattebo, B. O., & Booth, D. B. (2003). Long-term storm water quantity and quality performance of permeable pavement systems. Water Research, 37, 4369–4376.

    Article  Google Scholar 

  • Choubane, B., Page, G. C., & Musselman, J. A. (1998). Investigation of water permeability of coarse graded superpave pavements. Journal of the Association of Asphalt Paving Technologists, 67, 254–276.

    Google Scholar 

  • CIRIA (2007). The SuDS manual. London: Construction Industry Research and Information Association (CIRIA).

    Google Scholar 

  • Coupe, S. J., Smith, H. G., Newman, A. P., & Puehmeier, T. (2003). Biodegradation and microbial diversity within permeable pavements. European Journal of Protistology, 39, 495–498.

    Article  Google Scholar 

  • D’Arcy, B. J., Usman, F., Griffiths, D., & Chatfield, P. (1998). Initiatives to tackle diffuse pollution in the UK. Water Science Technology, 38, 131–138.

    Article  Google Scholar 

  • Dierkes, C., Kuhlman, L., Kandasamy, J., & Angelis, G. (2002). Pollution retention capability and maintenance of permeable pavements. In E. W. Strecker (Ed.), Proceedings of the 9th International Conference on Urban Drainage (8--13 Sept 2002). USA: Portland.

    Google Scholar 

  • Houle, J. J., Roseen, R. M., Ballestero, T. P., Puls, T. A., & Sherrard, J. (2013). Comparison of maintenance cost, labor demands, and system performance for LID and conventional stormwater management. Journal of Environmental Engineering, 139, 932–938.

    Article  Google Scholar 

  • James, W., & von Langsdorf, H. (2003). Computer aided design of permeable concrete block pavement for reducing stressors and contaminants in an urban environment. In Proceedings of the 7th International Conference on Concrete Block Paving (PAVE AFRICA, 12-15/10/2003), Sun City, South Africa.

    Google Scholar 

  • Kayhanian, M., Vichare, A., Green, P. G., Alaimo, C., Hwang, H. M., Signore, J. M., et al. (2010). Water quality evaluation of leachate produced from pavement specimens under controlled laboratory conditions. Road Materials and Pavement Design, 11, 9–28.

    Article  Google Scholar 

  • Kayhanian, M., Anderson, D., Harvey, J., Jones, D., & Muhunthan, B. (2012a). Permeability measurement and scanning images to investigate clogging of pervious concrete pavements in parking lots. Journal of Environmental Management, 95, 114–123.

    Google Scholar 

  • Kayhanian, M., Fruchtman, B., Gulliver, J. S., Montanaro, C., & Raniere E (2012b) Review of highway runoff characteristics: comparative analysis and universal implications. Wat Res, 46, 6609–6624.

    Google Scholar 

  • Kellems, B. L., Johnson, P. E., Sanchez, F., & Crowser, H. (2003). Design of Emerging Technologies for Control and Removal of Storm water Pollutants. In P. Bizier & P. DeBarry (Eds.), Proceedings of the Water World and Environmental Resources Congress (23-26/06/2003). USA: Philadelphia, PA.

    Google Scholar 

  • Legret, M., Colandini, V., & LeMarc, C. (1996). Effects of a porous pavement with reservoir structure on the quality of runoff water and soil. Science of Total Environment, 190, 335–340.

    Article  Google Scholar 

  • Lei, L., Khodadoustb, A. P., Suidana, M. T., & Tabakc, H. H. (2005). Biodegradation of sediment-bound PAHs in field contaminated sediment. Water Resource, 39, 349–361.

    Google Scholar 

  • Li, H., Harvey, J., & Jones, D. (2012). Developing a mechanistic-empirical design procedure for fully permeable pavement under heavy traffic. Transport Research Record: Journal of Transport Research Board, 2305, 83–94.

    Article  Google Scholar 

  • NCDENR (2005). Updated draft manual of storm water best management practices. Public Consultation Document DOC—7-1. North Carolina Department of Environment and Natural Resources (NCDENR), Division of Water Quality, NC, USA.

    Google Scholar 

  • Newman, A. P., Coupe, S. J., Puehmeier, T., Morgan, J. A., Henderson, J., & Pratt, C. J. (2002). Microbial ecology of oil degrading porous pavement structures. Global solutions for urban drainage. In E.W. Strecker (Eds.), Proceedings of the 9th International Conference on Urban Drainage (08-13/09/2002), (pp. 1–12), Portland, OR, USA.

    Google Scholar 

  • Newman, A. P., Puehmeier, T., Kwok, V., Lam, M., Coupe, S. J., Shutleworth, A., et al. (2004). Protecting groundwater with oil retaining pervious pavements: Historical perspectives, limitations and recent developments. Quarterly Journal of Engineering Geology, 37, 283–291.

    Article  Google Scholar 

  • Nishigaki, M. (2000). Producing permeable blocks and pavement bricks from molten slag. Waste Management, 20, 185–192.

    Article  Google Scholar 

  • Omoto, S., Yoshida, T., & Hata, S. (2002). Full-scale durability evaluation testing of interlocking block pavement with geotextile. Proceedings of the 7th International Conference on Concrete Block Paving (PAVE AFRICA, 12-15/10/2003), Sun City, South Africa.

    Google Scholar 

  • Pagotto, C., Legret, M., & Le Cloirec, P. (2000). Comparison of the hydraulic behaviour and the quality of highway runoff water according to the type of pavement. Water Research, 34, 4446–4454.

    Article  Google Scholar 

  • Pratt, C. J., Newman, A. P., & Bond, P. C. (1999). Mineral oil biodegradation within a permeable pavement: Long term observations. Water Science Technology, 39, 109–130.

    Article  Google Scholar 

  • Roseen, R. M., Ballestero, T. P., Houle, J. J., Briggs, J. F., & Houle, K. M. (2012). Water quality and hydrologic performance of a porous asphalt pavement as a storm-water treatment strategy in a cold climate. Journal of Environmental Engineering, 138, 81–89.

    Article  Google Scholar 

  • Rossia, L., Krejcia, V., Rauch, W., Kreikenbauma, S., Fankhausera, R., & Gujera, W. (2005). Stochastic modeling of Total Suspended Solids (TSS) in urban areas during rain events. Water Research, 39, 4188–4196.

    Article  Google Scholar 

  • Scholz, M. (2006a). Practical sustainable urban drainage system decision support tools. Proceedings of the Institution of Civil Engineers—Engineering Sustainables, 159, 117–125.

    Google Scholar 

  • Scholz, M. (2006b). Wetland systems to control urban runoff. Amsterdam: Elsevier.

    Google Scholar 

  • Scholz, M. (2010). Wetland systems—storm water management control: Green energy and technology. Berlin: Springer.

    Google Scholar 

  • Scholz, M. (2013). Water quality improvement performance of geotextiles within permeable paving systems: a critical review. Water, 5, 462–479.

    Article  Google Scholar 

  • Scholz, M., & Grabowiecki, P. (2007). Review of permeable pavement systems. Building and Environment, 42, 3830–3836.

    Article  Google Scholar 

  • Scholz, M., & Uzomah, V. (2013). Rapid decision support tool based on novel ecosystem service variables for retrofitting of permeable pavement systems in the presence of trees. Science Total Environment, 458–460, 486–498.

    Article  Google Scholar 

  • Scholz, M., Corrigan, N. L., & Kazemi-Yazdi, S. (2006). The Glasgow SUDS management project: case studies (Belvidere hospital and celtic FC stadium areas). Environmental Engineering Science, 23(6), 908–922.

    Article  Google Scholar 

  • Schlüter, W., & Jefferies, C. (2004). Modeling the outflow from a porous pavement. Urban Water, 4, 245–253.

    Article  Google Scholar 

  • Tota-Maharaj, K., & Scholz, M. (2010). Efficiency of permeable pavement systems for the removal of urban runoff pollutants under varying environmental conditions. Environmental Progress and Sustainable Energy, 29, 358–369.

    Article  Google Scholar 

  • Tota-Maharaj, K., & Scholz, M. (2013a). Modeling of permeable pavements for treatment of urban runoff using self-organizing maps. Environmental Engineering Management Journal, 12, 2273–2287.

    Google Scholar 

  • Tota-Maharaj, K., & Scholz, M. (2013b). Combined permeable pavement and photocatalytic titanium dioxide oxidation system for urban runoff treatment and disinfection. Water Environmental Journal, 27, 338–347.

    Google Scholar 

  • Tota-Maharaj, K., Scholz, M., Ahmed, T., French, C., & Pagaling, E. (2010). The synergy of permeable pavements and geothermal heat pumps for stormwater treatment and reuse. Environmental Technology, 31, 1517–1531.

    Article  Google Scholar 

  • Wilson, S., Newman, A. P., Puehmeier, T., & Shuttleworth, A. (2003). Performance of an oil interceptor incorporated into a pervious pavement. Proceedings of the Institution of Civil Engineers—Engineering Sustainability, 156, 51–58.

    Google Scholar 

  • Yang, J., & Guoliang, J. (2003). Experimental study of pervious concrete pavement materials. Cement and Concrete Research, 33, 381–386.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miklas Scholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scholz, M. (2014). Permeable Pavements and Storm Water Management. In: Gopalakrishnan, K., Steyn, W., Harvey, J. (eds) Climate Change, Energy, Sustainability and Pavements. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44719-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44719-2_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44718-5

  • Online ISBN: 978-3-662-44719-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics