Skip to main content

The Effects of Force Feedback on Surgical Task Performance: A Meta-Analytical Integration

  • Conference paper
  • First Online:
Haptics: Neuroscience, Devices, Modeling, and Applications (EuroHaptics 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8619))

Abstract

Since the introduction of surgical robots into clinical practice, there has been a lively debate about the potential benefits and the need to implement haptic feedback for the surgeon. In the current article, a quantitative review of empirical findings from 21 studies (N = 332 subjects) is provided. Using meta-analytical methods, we found moderate effects on task accuracy (g = .61), large effect sizes of additional force feedback on average forces (g = .82) and peak forces (g = 1.09) and no effect on task completion times (g = −.05) when performing surgical tasks. Moreover, the magnitude of the force feedback effect was attenuated when visual depth information was available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arata, J., Takahashi, H., Yasunaka, S., Onda, K., Tanaka, K., Sugita, N., Hashizume, M., et al.: Impact of network time-delay and force feedback on tele-surgery. Int. J. Comput. Assist. Radiol. Surg. 3(3–4), 371–378 (2008)

    Article  Google Scholar 

  2. Bauernschmitt, R., Gaertner, C., Braun, E.U., Mayer, H., Knoll, A., Schreiber, U. Lange, R.: Improving the quality of robotic heart surgery: Evaluation in a new experimental system. In: Proceedings of the 4th Russian-Bavarian Conference on Biomedical Engineering at Moscow Institute of Electronic Technology, pp. 137–140. Technical University, Zelenograd, Moscow, Russia, 8/9 July 2008

    Google Scholar 

  3. Borenstein, M., Hedges, L.V., Higgins, J.P., Rothstein, H.R.: Introduction to Meta-Analysis. Wiley, Hoboken (2011)

    Google Scholar 

  4. Braun, E.U., Mayer, H., Knoll, A., Lange, R., Bauernschmitt, R.: The must-have in robotic heart surgery: haptic feedback. In: Medical Robotics, pp. 9–20. I-Tech Education and Publishing, Vienna, Austria (2008)

    Google Scholar 

  5. Braun, E.U., Gaertner, C., Mayer, H., Knoll, A., Lange, R., Bauernschmitt, R.: Haptic Aided Roboting for Heart Surgeons. In: Proceedings of the 4th European Conference of the International Federation for Medical and Biological Engineering, pp. 1695–1696. Springer Berlin Heidelberg (2009)

    Google Scholar 

  6. Cadiere, G.B., Himpens, J., Germay, O., Izizaw, R., Degueldre, M., Vandromme, J., et al.: Feasibility of robotic laparoscopic surgery: 146 cases. World J. Surg. 25(11), 1467–1477 (2001)

    Google Scholar 

  7. Cohen, J.: Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum (1988)

    Google Scholar 

  8. Debus, T., Becker, T., Dupont, P., Jang, T.J., Howe, R.: Multichannel vibrotactile display for sensory substitution during teleoperation. In: Proceedings of SPIE–The International Society for Optical Engineering, Vol. 4570, pp. 42–49 (2001)

    Google Scholar 

  9. Deml, B.: Telepräsenzsysteme - Gestaltung der Mensch-System Schnittstelle, Dissertation thesis, University of the Armed Forces. http://edok01.tib.uni-hannover.de/edoks/e01dd01/482342803l.pdf (2004). Accessed 16 Jan 2014

  10. Gerovich, O., Marayong, P., Okamura, A.M.: The effect of visual and haptic feedback on computer-assisted needle insertion. Comput. Aided Surg. 9(6), 243–249 (2004)

    Article  Google Scholar 

  11. Gwilliam, J.C., Mahvash, M., Vagvolgyi, B., Vacharat, A., Yuh, D.D., Okamura, A.M.: Effects of haptic and graphical force feedback on teleoperated palpation. In: ICRA’09. IEEE International Conference on Robotics and Automation, 2009, pp. 677–682. IEEE (2009)

    Google Scholar 

  12. Hagen, M.E., Meehan, J.J., Inan, I., Morel, P.: Visual clues act as a substitute for haptic feedback in robotic surgery. Surg. Endosc. 22(6), 1505–1508 (2008)

    Article  Google Scholar 

  13. Hedges, L., Olkin, I.: Statistical Methods for Meta-Analysis. Academic Press, San Diego (1985)

    MATH  Google Scholar 

  14. Kazi, A.: Operator performance in surgical telemanipulation. Presence Teleoperators Virtual Environ. 10(5), 495–510 (2001)

    Article  Google Scholar 

  15. Mahvash, M., Gwilliam, J., Agarwal, R., Vagvolgyi, B., Su, L. M., Yuh, D. D., Okamura, A.M.: Force-feedback surgical teleoperator: Controller design and palpation experiments. In: Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Haptics 2008, pp. 465–471. IEEE (2008)

    Google Scholar 

  16. Mohr, F.W., Falk, V., Diegeler, A., Walther, T., et al.: Computer-enhanced ‘robotic’ cardiac surgery: experience in 148 patients. J. Thorac. Cardiovasc. Surg. 121, 842–853 (2001)

    Article  Google Scholar 

  17. Moody, L., Baber, C., Arvanitis, T.N.: Objective surgical performance evaluation based on haptic feedback. Stud. Health Technol. Inf. 85, 304–310 (2002)

    Google Scholar 

  18. Nitsch, V., Färber, B.: A meta-analysis of the effects of haptic interfaces on task performance with teleoperation systems. IEEE Trans. Hapt. 6(4), 387–398 (2012)

    Article  Google Scholar 

  19. Okamura, A.M.: Methods for haptic feedback in teleoperated robot-assisted surgery. Ind. Rob. Int. J. 31(6), 499–508 (2004)

    Article  Google Scholar 

  20. Panait, L., Akkary, E., Bell, R.L., Roberts, K.E., Dudrick, S.J., Duffy, A.J.: The role of haptic feedback in laparoscopic simulation training. J. Surg. Res. 156(2), 312–316 (2009)

    Article  Google Scholar 

  21. Paul, L., Cartiaux, O., Docquier, P.L., Banse, X.: Ergonomic evaluation of 3D plane positioning using a mouse and a haptic device. Int. J. Med. Rob. Comput. Assist. Surg. 5(4), 435–443 (2009)

    Article  Google Scholar 

  22. Santos-Carreras, L., Beira, R., Sengül, A., Gassert, R., Bleuler, H.: Influence of force and torque feedback on operator performance in a VR-based suturing task. Appl. Bion. Biomech. 7(3), 217–230 (2010)

    Article  Google Scholar 

  23. Salkini, M.W., Doarn, C.R., Kiehl, N., Broderick, T.J., Donovan, J.F., Gaitonde, K.: The role of haptic feedback in laparoscopic training using the LapMentor II. J. Endourol. 24(1), 99–102 (2010)

    Article  Google Scholar 

  24. Seibold, U.: An advanced force feedback tool design for minimally invasive robotic surgery. Dissertation Thesis, Technical University Munich (2013)

    Google Scholar 

  25. Talasaz, A., Trejos, A. L., Patel, R.V.: Effect of force feedback on performance of robotics-assisted suturing. In: Proceedings of the 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 823–828. IEEE (2012)

    Google Scholar 

  26. Tholey, G.: A teleoperative haptic feedback framework for computer-aided minimally invasive surgery. Doctoral Dissertation, Drexel University (2007)

    Google Scholar 

  27. Van der Meijden, O.A.J., Schijven, M.P.: The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review. Surg. Endosc. 23(6), 1180–1190 (2009)

    Article  Google Scholar 

  28. Wagner, C.R., Howe, R.D.: Force feedback benefit depends on experience in multiple degree of freedom robotic surgery task. IEEE Trans. Rob. 23(6), 1235–1240 (2007)

    Article  Google Scholar 

  29. Wagner, C.R., Stylopoulos, N., Howe, R.D.: The role of force feedback in surgery: analysis of blunt dissection. In: Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 73–79 (2002)

    Google Scholar 

  30. Westebring-van der Putten, E.P., Goossens, R.H.M., Jakimowicz, J.J., Dankelman, J.: Haptics in minimally invasive surgery-a review. Minim. Invasive Ther. Allied Technol. 17(1), 3–16 (2008)

    Article  Google Scholar 

  31. Yiasemidou, M., Glassman, D., Vasas, P., Badiani, S., Patel, B.: Faster simulated laparoscopic cholecystectomy with haptic feedback technology. Open Access Surg. 4, 39–44 (2011)

    Article  Google Scholar 

  32. Zhou, M., Perreault, J., Schwaitzberg, S.D., Cao, C.G.L.: Effects of experience on force perception threshold in minimally invasive surgery. Surg. Endosc. 22(2), 510–515 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weber, B., Schneider, S. (2014). The Effects of Force Feedback on Surgical Task Performance: A Meta-Analytical Integration. In: Auvray, M., Duriez, C. (eds) Haptics: Neuroscience, Devices, Modeling, and Applications. EuroHaptics 2014. Lecture Notes in Computer Science(), vol 8619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44196-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44196-1_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44195-4

  • Online ISBN: 978-3-662-44196-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics