Skip to main content

Banded Iron Formation

  • Reference work entry
  • First Online:
Encyclopedia of Astrobiology

Synonyms

BIF; Itabirite; Taconite

Definition

A lithological term applied to a thinly bedded or laminated chemical sedimentary rock consisting of successive layers of fine-grained quartz, iron oxides, carbonates, and/or silicates, typically containing 20–40 % iron and 40–50 % silica (James 1954; Trendall 2002; Klein 2005) (Fig. 1).

Banded Iron Formation, Fig. 1
figure 31 figure 31

(a) Outcrop photograph of Algoma-type BIF with layers of magnetite BIF interbedded with felsic volcaniclastic rocks from the 2.9 Ga Itilliarsuk BIF, West Greenland. (b) Outcrop photograph of weakly folded magnetite-quartz BIF from the 2.85 Ga Central Slave Cover Group, Slave Craton, Northwest Territories, Canada. Brownish bands are secondary iron oxides and iron oxyhydroxides. (c) A pristine BIF core sample from the Joffre Member, Brockman Iron Formation, Hamersley Province, West Australia. Black mesobands are composed mostly of dense magnetite, red micro- and mesobands are composed of chert + hematite, and gray micro- and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Alexander BW, Bau M, Andersson P, Dulski P (2008) Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochim Cosmochim Acta 72:378–394

    ADS  Google Scholar 

  • Andre L, Cardinal D, Alleman LY, Moorbath S (2006) Silicon isotopes in ca. 3.8 Ga West Greenland rocks as clues to the Eoarchean supracrustal Si cycle. Earth Planet Sci Lett 245:162–173

    ADS  Google Scholar 

  • Arndt NT (1991) High Ni in Archean tholeiites. Tectonophysics 187:411–419

    ADS  Google Scholar 

  • Ayres DE (1972) Genesis of iron-bearing minerals in banded iron formation mesobands in the Dales Gorge Member, Hamersley Group, Western Australia. Econ Geol 67:1214–1233

    Google Scholar 

  • Bau M (1993) Effects on syn- and post-depositional processes on the rare-earth element distribution in Precambrian iron formations. Eur J Mineral 5:257–267

    Google Scholar 

  • Bekker A, Slack JF, Planavsky N, Krapez B, Hofmann A, Konhauser KO, Rouxel OJ (2010) Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic and biospheric processes. Econ Geol 105:467–508

    Google Scholar 

  • Beukes NJ (1983) Paleoenvironmental setting of iron-formations in the depositional basin of the Transvaal Supergroup, South Africa. In: Trendall AF, Morris RC (eds) Iron-formation: facts and problems. Elsevier, New York, pp 131–209

    Google Scholar 

  • Beukes NJ, Klein C (1990) Geochemistry and sedimentology of a facies transition – from microbanded to granular iron formation in the early Proterozoic Transvaal Supergroup, South Africa. Precambrian Res 47:99–139

    ADS  Google Scholar 

  • Bjerrum CJ, Canfield DE (2002) Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417:159–162

    ADS  Google Scholar 

  • Cairns-Smith AG (1978) Precambrian solution photochemistry, inverse segregation, and banded iron-formations. Nature 276:807–808

    ADS  Google Scholar 

  • Cloud P (1965) Significance of the Gunflint (Precambrian) microflora. Science 148:27–35

    ADS  Google Scholar 

  • Cloud P (1973) Paleoecological significance of the banded-iron formation. Econ Geol 68:1135–1143

    Google Scholar 

  • Clout J, and Simonson B (2005) Precambrian iron formations and iron formation-hosted iron ore deposits. Economic Geology, 100th Anniversary Volume: 643–679

    Google Scholar 

  • Condie KC (1981) Archean greenstone belts. Elsevier, Amsterdam, p 442

    Google Scholar 

  • Dauphas N, van Zuilen M, Wadhwa M, Davis AM, Bernard M, Janney PE (2004) Clues from Fe isotope variations on the origin of early Archean BIFs from Greenland. Science 306:2077–2080

    ADS  Google Scholar 

  • Derry LA, Jacobsen SB (1990) The chemical evolution of Precambrian seawater: evidence from REEs in banded iron formations. Geochim Cosmochim Acta 54:2965–2977

    ADS  Google Scholar 

  • Frei R, Polat A (2007) Source heterogeneity for the major components of the ca. 3.7 Ga banded iron formations (Isua Greenstone Belt, Western Greenland): tracing the nature of interacting water masses in BIF formation. Earth Planet Sci Lett 253:266–281

    ADS  Google Scholar 

  • Frei R, Gaucher C, Simon PW, Canfield DE (2009) Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461:250–253

    ADS  Google Scholar 

  • Garrels RM, Perry EA, MacKenzie FT (1973) Genesis of Precambrian iron-formations and the development of atmospheric oxygen. Econ Geol 68:1173–1179

    Google Scholar 

  • Gole MJ, Klein C (1981) Banded iron-formations through much of Precambrian time. J Geol 89:169–183

    ADS  Google Scholar 

  • Graf JL Jr (1978) Rare earth elements, iron formations and sea water. Geochim Cosmochim Acta 42:1845–1850

    ADS  Google Scholar 

  • Hamade T, Konhauser KO, Raiswell R, Goldsmith S, Morris RC (2003) Using Ge/Si ratios to decouple iron and silica fluxes in Precambrian iron formations. Geology 31:35–38

    ADS  Google Scholar 

  • Holland HD (1973) The oceans: a possible source of iron in iron-formations. Econ Geol 68:1169–1172

    Google Scholar 

  • Holm NG (1989) The 13C/12C ratios of siderite and organic matter of a modern metalliferous hydrothermal sediment and their implications for banded iron formations. Chem Geol 77:41–45

    ADS  Google Scholar 

  • Jacobsen SB, Pimentel-Klose MR (1988) A Nd isotopic study of the Hamersley and Michipicoten banded iron formations: the source of REE and Fe in Archean oceans. Earth Planet Sci Lett 87:29–44

    ADS  Google Scholar 

  • James HL (1954) Sedimentary facies iron-formation. Econ Geol 49:235–293

    Google Scholar 

  • Johnson CM, Beard B, Beukes N, Klein C, O’Leary J (2003) Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton. Contrib Mineral Petrol 144:523–547

    ADS  Google Scholar 

  • Johnson CM, Beard BL, Klein C, Beukes NJ, Roden EE (2008) Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochim Cosmochim Acta 72:151–169

    ADS  Google Scholar 

  • Klein C (2005) Some Precambrian banded iron formations (BIFs) from around the world: their age, geological setting, mineralogy, metamorphism, geochemistry, and origin. Am Mineral 90:1473–1499

    ADS  Google Scholar 

  • Konhauser KO, Pecoits E, Lalonde SV, Papineau D, Nisbet EG, Barley ME, Arndt NT, Zahnle K, Kamber BS (2009) Ocean nickel depletion and a methanogen famine before the great oxidation event. Nature 458:750–754

    ADS  Google Scholar 

  • Konhauser KO, Lalonde SV, Planavsky NJ, Pecoits E, Lyons TW, Mojzsis SJ, Rouxel OJ, Barley ME, Rosiere C, Fralick PW, Kump LR, Bekker A (2011) Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature 478:369–373

    ADS  Google Scholar 

  • Lascelles D (2006) The Mount Gibson banded iron formation-hosted magnetite deposit: two distinct processes for the origin of high-grade iron ore. Econ Geol 101:651–666

    Google Scholar 

  • Menzie WD, Soto-Viruet Y, Bermúdez-Lugo O, Mobbs PM, Perez AA, Taib M, Wacaster S, and Staff (2013) Review of selected global mineral industries in 2011 and an outlook to 2017. U.S. Geological Survey open-file report 2013–1091, 33 p

    Google Scholar 

  • Moore ES (1918) The iron-formation on Belcher Islands, Hudson Bay, with special reference to its origin and its associated algal limestones. J Geol 26:412–138

    ADS  Google Scholar 

  • Morris R (1993) Genetic modelling for banded iron formation of the Hamersley Group, Pilbara craton, western Australia. Precambrian Res 60:243–286

    ADS  Google Scholar 

  • Posth NR, Hegler F, Konhauser KO, Kappler A (2008) Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans. Nature 1:703–707

    Google Scholar 

  • Robbins LJ, Lalonde SV, Saito MA, Planavsky NJ, Mloszewska AM, Pecoits E, Scott C, Dupont CL, Kappler A, Konhauser KO (2013) Authigenic iron oxide proxies for marine zinc over geological time and implications for eukaryotic metallome evolution. Geobiology. doi:10.1111/gbi.12036

    Article  Google Scholar 

  • Robert F, Chaussidon M (2006) A paleotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 443:969–972

    ADS  Google Scholar 

  • Rouxel OJ, Galy A, Elderfield H (2006) Germanium isotopic variations in igneous rocks and marine sediments. Geochim Cosmochim Acta 70:3387–3400

    ADS  Google Scholar 

  • Saito MA, Sigman DM, Morel FMM (2003) The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean-Proterozoic boundary. Inorg Chim Acta 356:308–318

    Google Scholar 

  • Scott C, Planavsky NJ, Dupont CL, Kendall B, Gill BC, Robbins LJ, Husband KF, Arnold GL, Wing BA, Poulton SW, Bekker A, Anbar AD, Konhauser KO, Lyons TW (2012) Bioavailability of zinc in marine systems through time. Nat Geosci 6:125–128

    ADS  Google Scholar 

  • Simonson BM (1985) Sedimentological constraints on the origins of Precambrian iron-formations. Geol Soc Am Bull 96:244–252

    Google Scholar 

  • Steinhoefel G, Horn I, von Blanckenburg F (2009) Micro-scale tracing of Fe and Si signatures in banded iron formation using femtosecond laser ablation. Geochim Cosmochim Acta 73:5343–5360

    ADS  Google Scholar 

  • Steinhoefel G, von Blanckenburg F, Horn I, Konhauser KO, Beukes NJ, Gutzmer J (2010) Deciphering formation processes of banded iron formations from the Transvaal and the Hamersley successions by combined Si and Fe isotope analysis using UV femtosecond laser ablation. Geochim Cosmochim Acta 74:2677–2696

    ADS  Google Scholar 

  • Taylor D, Dalstra H (2001) Genesis of high-grade hematite ore bodies of the Hamersley Province, Western Australia. Econ Geol 96:837–873

    Google Scholar 

  • Trendall AF (2002) The significance of iron-formation in the Precambrian stratigraphic record. Int Assoc Sedimentol Spec Publ 33:33–66

    Google Scholar 

  • Trendall AF, Blockley JG (1970) The iron formations of the Precambrian Hamersley Group, Western Australia: with special reference to associated crocidolite. West Aust Geol Surv Bull 119:336

    Google Scholar 

  • van den Boorn SHJM, van Bergen JM, Vroon PZ, de Vries ST, Nijman W (2010) Silicon isotope and trace element constraints on the origin of ca. 3.5 & 3.0 Ga cherts: implications for early Archean marine environments. Geochim Cosmochim Acta 74:1077–1103

    ADS  Google Scholar 

  • Webb AD, Dickens GR, Oliver NHS (2003) From banded iron-formation to iron ore: geochemical and mineralogical constraints from across the Hamersley Province, Western Australia. Chem Geol 197:215–251

    ADS  Google Scholar 

  • Weyer S, Anbar AD, Gerdes A, Gordon GW, Algeo TJ, Boyle EA (2008) Natural fractionation of 238U/235U. Geochim Cosmochim Acta 72:345–359

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Mloszewska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mloszewska, A.M., Haugaard, R.N., Pecoits, E., Konhauser, K.O. (2015). Banded Iron Formation. In: Gargaud, M., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44185-5_147

Download citation

Publish with us

Policies and ethics