Skip to main content

Menopause and Oxidative Stress

  • Chapter
  • First Online:
Skin, Mucosa and Menopause

Abstract

In women, postmenopause may be considered the beginning of aging due to a series of changes that are caused by the decline of estrogen levels, some of which involve the skin. It is known that estrogens have an antioxidant activity and function as sex hormone; therefore, a decrease in estrogen levels during the postmenopausal period is one of the factors that control age-related oxidative stress.

Oxidative stress refers to a serious imbalance between the oxidant species that are produced by metabolism and the effective action of the antioxidant system, and this imbalance can cause severe oxidative damage in cells. When the levels of these cytotoxic agents increase, serious damage occurs through the oxidative modification of macromolecules such as lipids, proteins, and DNA, and this process occurs more frequently with age. These disturbances may cause skin changes such as dryness, a reduction in epidermal and dermal thickness, a decrease in collagen content, a reduction in elasticity, fragility, and poor healing. Once women begin ovarian senescence, estrogen production becomes erratic, antioxidant protection is lost, and oxidative stress is assumed to increase. In this chapter, we review the general aspects of postmenopause that are linked to oxidative stress and its relationship with skin aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall G, Phillips TJ. Estrogen and skin: the effects of estrogen, menopause, and hormone replacement therapy on the skin. J Am Acad Dermatol. 2005;53:555–68.

    PubMed  Google Scholar 

  2. Emmerson E, Hardman MJ. The role of estrogen deficiency in skin ageing and wound healing. Biogerontology. 2012;13(1):3–20.

    CAS  PubMed  Google Scholar 

  3. Mofid A, Seyyed Alinaghi SA, Zandieh S, Yazdani T. Hirsutism. Int J Clin Pract. 2007;62:433–43.

    PubMed  Google Scholar 

  4. Blume-Peytavi U, Atkin S, Gieler U, Grimalt R. Skin academy: hair, skin, hormones and menopause - current status/knowledge on the management of hair disorders in menopausal women. Eur J Dermatol. 2012;22:310–8.

    CAS  PubMed  Google Scholar 

  5. Broekmans FJ, Soules MR, Fauser BC. Ovarian aging: mechanisms and clinical consequences. Endocr Rev. 2009;30:465–93.

    CAS  PubMed  Google Scholar 

  6. Weiss G, Skurnick JH, Goldsmith LT, Santoro NF, Park SJ. Menopause and hypothalamic-pituitary sensitivity to estrogen. JAMA. 2004;292:2991–6.

    CAS  PubMed  Google Scholar 

  7. Avis N, Brockwell S, Colvin A. A universal menopausal syndrome? Am J Med. 2005;118(12B):37S–46.

    Google Scholar 

  8. Troen BR. The biology of aging. Mt Sinai J Med. 2003;70:3–22.

    PubMed  Google Scholar 

  9. Davidovic M, Milosevic DR. Are all dilemmas in gerontology being swept under the carpet of intra-individual variability? Med Hypotheses. 2006;66:432–6.

    PubMed  Google Scholar 

  10. Goldsmith TC. Aging theories and the zero-sum game. Rejuvenation Res. 2014;17:1–2.

    PubMed  Google Scholar 

  11. Tatone C, Amicarelli F, Carbone MC, Monteleone P, Caserta D, Marci R, et al. Cellular and molecular aspects of ovarian follicle ageing. Hum Reprod Update. 2008;14:131–42.

    CAS  PubMed  Google Scholar 

  12. Mendoza-Núñez VM, Ruiz-Ramos M, Sánchez-Rodríguez MA, Retana-Ugalde R, Muñoz-Sánchez JL. Aging-related oxidative stress in healthy humans. Tohoku J Exp Med. 2007;231:261–8.

    Google Scholar 

  13. Moffatt O, Drury S, Tomlison M, Afnan M, Denny S. The apoptotic profile of human cumulus cells changes with patient age and after exposure to sperm but not in relation to oocyte maturity. Fertil Steril. 2002;77:1006–11.

    PubMed  Google Scholar 

  14. Gold EB, Crawford SL, Avis NE, Crandall CJ, Matthews KA, Waetjen LE, et al. Factors related to age at natural menopause: longitudinal analyses from SWAN. Am J Epidemiol. 2013;178:70–83.

    PubMed Central  PubMed  Google Scholar 

  15. Shuster LT, Rhodes DJ, Gostout BS, Grossardt BR, Roccae WA. Premature menopause or early menopause: long-term health consequences. Maturitas. 2010;65:161–6.

    PubMed Central  PubMed  Google Scholar 

  16. Vajaranant TS, Pasquale LR. Estrogen deficiency accelerates aging of the optic nerve. Menopause. 2012;19:942–7.

    PubMed Central  PubMed  Google Scholar 

  17. Pansini F, Mollica G, Bergamini CM. Management of the menopausal disturbances and oxidative stress. Curr Pharm Des. 2005;11:2063–73.

    CAS  PubMed  Google Scholar 

  18. Chen JT, Kotani K. An inverse relation between the simplified menopausal index and biological antioxidant potential. Climacteric. 2013;16:288–91.

    CAS  PubMed  Google Scholar 

  19. Muchová J, Sustrová M, Garaiová I, Liptáková A, Blazıcek P, Kvasnicka P, et al. Influence of age on activities of antioxidant enzymes and lipid peroxidation products in erythrocytes and neutrophils of Down syndrome patients. Free Radic Biol Med. 2001;31:499–508.

    PubMed  Google Scholar 

  20. de Haan JB, Cristiano F, Iannello R, Bladier C, Keiner MJ, Kola I. Elevation in the ratio of Cu/Zn-superoxide dismutase to glutathione peroxidase activity induces features of cellular senescence and this effect is mediated by hydrogen peroxide. Hum Mol Genet. 1996;5:283–92.

    PubMed  Google Scholar 

  21. Esbensen AJ. Health conditions associated with aging and end of life of adults with Down syndrome. Int Rev Res Ment Retard. 2010;39(C):107–26.

    PubMed Central  PubMed  Google Scholar 

  22. Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans. 2007;35(part 5):1147–50.

    CAS  PubMed  Google Scholar 

  23. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5:9–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO. Oxygen poisoning and X-irradiation: a mechanism in common. Science. 1954;119:623–6.

    CAS  PubMed  Google Scholar 

  25. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300.

    CAS  PubMed  Google Scholar 

  26. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244:6049–55.

    CAS  PubMed  Google Scholar 

  27. Bottai G, Mancina R, Muratori M, Di Gennaro P, Lotti T. 17β-estradiol protects human skin fibroblasts and keratinocytes against oxidative damage. J Eur Acad Dermatol Venereol. 2012. doi:10.1111/j.1468-3083.2012.04697.

    PubMed  Google Scholar 

  28. Babior BM. Phagocytes and oxidative stress. Am J Med. 2000;109:33–44.

    CAS  PubMed  Google Scholar 

  29. Betteridge DJ. What is oxidative stress? Metabolism. 2000;49(2 Suppl 1):3–8.

    CAS  PubMed  Google Scholar 

  30. Giles GI, Jacob C. Reactive sulfur species: an emerging concept in oxidative stress. Biol Chem. 2002;383:375–88.

    CAS  PubMed  Google Scholar 

  31. Halliwell B, Gutteridge JMC, Cross CE. Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med. 1992;119:598–620.

    CAS  PubMed  Google Scholar 

  32. Bunker VW. Free radicals, antioxidants and ageing. Med Lab Sci. 1992;49:299–312.

    CAS  PubMed  Google Scholar 

  33. Guzik TJ, Harrison DG. Vascular NADPH oxidases as drug targets for novel antioxidant strategies. Drug Discov Today. 2006;11:524–33.

    CAS  PubMed  Google Scholar 

  34. Mendoza-Núñez VM, Rosado-Pérez J, Santiago-Osorio E, Ortiz R, Sánchez-Rodríguez MA, Galván-Duarte RE. Aging linked to type 2 diabetes increases oxidative stress and chronic inflammation. Rejuvenation Res. 2011;14:25–31.

    PubMed  Google Scholar 

  35. Bleier L, Dröse S. Superoxide generation by complex III: from mechanistic rationales to functional consequences. Biochim Biophys Acta. 2012. pii: S0005-2728(12)01102-4. doi: 10.1016/j.bbabio.2012.12.002.

  36. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.

    PubMed  Google Scholar 

  37. Kadenbach B, Ramzan R, Vogt S. High efficiency versus maximal performance – the cause of oxidative stress in eukaryotes: a hypothesis. Mitochondrion. 2012. doi:10.1016/j.mito.2012.11.005.

    PubMed  Google Scholar 

  38. Miller DM, Buettner GR, Aust SD. Transition metals as catalysts of “autoxidation” reactions. Free Radic Biol Med. 1990;8:95–108.

    CAS  PubMed  Google Scholar 

  39. Halliwell B. Free radicals and antioxidants: updating a personal view. Nutr Rev. 2012;70:257–65.

    PubMed  Google Scholar 

  40. Lipinski B. Is it oxidative or free radical stress and why does it matter? Oxid Antioxid Med Sci. 2012;1:5–9.

    Google Scholar 

  41. Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxd Redox Signal. 2011;15:1583–606.

    CAS  Google Scholar 

  42. Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, LLeonart ME. Oxidative stress and cancer: an overview. Ageing Res Rev. 2013;12:376–90.

    CAS  PubMed  Google Scholar 

  43. Gutteridge JM. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem. 1995;41:1819–28.

    CAS  PubMed  Google Scholar 

  44. Tresguerres JA, Kireev R, Tresguerres AF, Borras C, Vara E, Ariznavarreta C. Molecular mechanisms involved in the hormonal prevention of aging in the rat. J Steroid Biochem Mol Biol. 2008;108:318–26.

    CAS  PubMed  Google Scholar 

  45. Halliwell B, Hoult JR, Blake DR. Oxidants, inflammation, and anti-inflammatory drugs. FASEB J. 1988;2:2867–73.

    CAS  PubMed  Google Scholar 

  46. Rusting LR. Why do we age? Sci Am. 1992;367(6):86–95.

    Google Scholar 

  47. Niki E, Noguchi N, Tsuchihashi H, Gotoh N. Interaction among vitamin C, vitamin E, and β-carotene. Am J Clin Nutr. 1995;62(6 Suppl):1322S–6.

    CAS  PubMed  Google Scholar 

  48. Niki E. Assessment of antioxidant capability in vitro and in vivo. Free Radic Biol Med. 2010;49:503–15.

    CAS  PubMed  Google Scholar 

  49. Liochev SI, Fridovich I. Mechanism of the peroxidase activity of Cu, Zn superoxide dismutase. Free Radic Biol Med. 2010;48:1565–9.

    CAS  PubMed  Google Scholar 

  50. Treiber N, Maity P, Singh K, Ferchiu F, Wlaschek M, Scharffetter-Kochanek K. The role of manganese superoxide dismutase in skin aging. Dermatoendocrinol. 2012;4:232–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Kirkman HN, Rolfo M, Ferraris AM, Gaetani GF. Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry. J Biol Chem. 1999;274:13908–14.

    CAS  PubMed  Google Scholar 

  52. Brigelius-Flohé R, Maiorino M. Glutathione peroxidases. Biochim Biophys Acta. 1830;2013:3289–303.

    Google Scholar 

  53. de Silva DM, Aust SD. Ferritin and ceruloplasmin in oxidative damage: review and recent finding. Can J Physiol Pharmacol. 1993;71:715–20.

    PubMed  Google Scholar 

  54. Bourdon E, Blache D. The importance of proteins in defense against oxidation. Antioxid Redox Signal. 2001;3:293–311.

    CAS  PubMed  Google Scholar 

  55. Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E. The antioxidant properties of serum albumin. FEBS Lett. 2008;582:1783–7.

    CAS  PubMed  Google Scholar 

  56. Iwao Y, Ishima Y, Yamada J, Noguchi T, Kragh-Hansen U, Mera K, et al. Quantitative evaluation of the role of cysteine and methionine residues in the antioxidant activity of human serum albumin using recombinant mutants. IUBMB Life. 2012;64:450–4.

    CAS  PubMed  Google Scholar 

  57. Reif DW. Ferritin as a source of iron for oxidative damage. Free Radic Biol Med. 1992;12:417–27.

    CAS  PubMed  Google Scholar 

  58. Galaris D, Pantopoulos K. Oxidative stress and iron homeostasis: mechanistic and health aspects. Crit Rev Clin Lab Sci. 2008;45:1–23.

    CAS  PubMed  Google Scholar 

  59. Samokyszyn VM, Reif DW, Miller DM, Aust SD. Effects of ceruloplasmin on superoxide-dependent iron release from ferritin and lipid peroxidation. Free Radic Res Commun. 1991;12–13(Part 1):153–9.

    PubMed  Google Scholar 

  60. Subbiah MT, Kessel B, Agrawal M, Rajan R, Abplanalp W, Rymaszewski Z. Antioxidant potential of specific estrogens on lipid peroxidation. J Clin Endocrinol Metab. 1993;77:1095–7.

    CAS  PubMed  Google Scholar 

  61. Kumar S, Lata K, Mukhopadhyay S, Mukherjee TK. Role of estrogen receptors in pro-oxidative and anti-oxidative actions of estrogens: A perspective. Biochim Biophys Acta. 1800;2010:1127–35.

    Google Scholar 

  62. Tikkanen MJ, Vihma V, Hockerstedt A, Jauhiainen M, Helisten H, Kaamanen M. Lipophilic oestrogen derivatives contained in lipoprotein particles. Acta Physiol Scand. 2002;176:117–21.

    CAS  PubMed  Google Scholar 

  63. Bhavnani BR. Estrogens and menopause: pharmacology of conjugated equine estrogens and their potential role in the prevention of neurodegenerative diseases such as Alzheimer’s. J Steroid Biochem Mol Biol. 2003;85(2–5):473–82.

    CAS  PubMed  Google Scholar 

  64. Markides C, Roy D, Liehr G. Concentration dependence of prooxidant and antioxidant properties of catecholestrogens. Arch Biochem Biophys. 1998;360:105–12.

    CAS  PubMed  Google Scholar 

  65. Wassmann K, Wassmann S, Nickenig G. Progesterone antagonizes the vasoprotective effect of estrogen on antioxidant enzyme expression and function. Circ Res. 2005;97:1046–54.

    CAS  PubMed  Google Scholar 

  66. Yager JD, Davidson NE. Estrogen carcinogenesis in breast cancer. N Engl J Med. 2006;354:270–82.

    CAS  PubMed  Google Scholar 

  67. Bolton JL, Thatcher GR. Potential mechanisms of estrogen quinone carcinogenesis. Chem Res Toxicol. 2008;21:93–101.

    PubMed Central  PubMed  Google Scholar 

  68. Agte V, Tarwadi K, Mengale S, Finge A, Chiplonkar S. Vitamin profile of cooked foods: how healthy is the practice of ready-to-eat foods? Int J Food Sci Nutr. 2002;53:197–208.

    CAS  PubMed  Google Scholar 

  69. Fairfield KM, Fletcher RH. Vitamins for chronic disease prevention in adults. JAMA. 2002;287:3116–26.

    CAS  PubMed  Google Scholar 

  70. Faruqi R, de la Motte C, DiCorleto PE. Alpha-tocopherol inhibits agonist-induced monocytic cell adhesion to cultured human endothelial cells. J Clin Invest. 1994;94:592–600.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Devaraj S, Li D, Jialal I. The effects of alpha-tocopherol supplementation on monocyte function. Decreased lipid oxidation, interleukin 1 beta secretion, and monocyte adhesion to endothelium. J Clin Invest. 1996;98:756–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Lam YT, Stocker R, Dawes IW. The lipophilic antioxidants α-tocopherol and coenzyme Q10 reduce the replicative lifespan of Saccharomyces cerevisiae. Free Radic Biol Med. 2010;49:237–44.

    CAS  PubMed  Google Scholar 

  73. Bowry VW, Ingold KU, Stocker R. Vitamin E in human low-density lipoprotein. When and how this antioxidant becomes a pro-oxidant. Biochem J. 1992;288:341–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Du J, Cullen JJ, Buettner GR. Ascorbic acid: chemistry, biology and the treatment of cancer. Biochim Biophys Acta. 1826;2012:443–57.

    Google Scholar 

  75. Pohanka M, Pejchal J, Snopkova S, Havlickova K, Karasova JZ, Bostik P, et al. Ascorbic acid: an old player with a broad impact on body physiology including oxidative stress suppression and immunomodulation: a review. Mini Rev Med Chem. 2012;12:35–43.

    CAS  PubMed  Google Scholar 

  76. Schneider M, Niess AM, Rozario F, Angres C, Tschositsch K, Golly I, et al. Vitamin E supplementation does not increase the vitamin C radical concentration at rest and after exhaustive exercise in healthy male subjects. Eur J Nutr. 2003;42:195–200.

    CAS  PubMed  Google Scholar 

  77. Traber MG, Stevens JF. Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med. 2011;51:1000–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Ingold KU, Bowry VW, Stocker R, Walling C. Autoxidation of lipids and antioxidation by alpha-tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids: unrecognized consequences of lipid particle size as exemplified by oxidation of human low density lipoprotein. Proc Natl Acad Sci U S A. 1993;90:45–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Sram RJ, Binkova B, Rossner Jr P. Vitamin C for DNA damage prevention. Mutat Res. 2012;733(1–2):39–49.

    CAS  PubMed  Google Scholar 

  80. Childs A, Jacobs C, Kaminski T, Halliwell B, Leeuwenburgh C. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic Biol Med. 2001;31:745–53.

    CAS  PubMed  Google Scholar 

  81. Van Kuijk FJGM, Sevanian A, Handelman GJ, Dratz EA. A new role for phospholipase A2: protection of membrane from lipid peroxidation damage. Trends Biochem Sci. 1987;12:31–4.

    Google Scholar 

  82. Watson AD, Navab M, Hama SY, Sevanian A, Prescott SM, Stafforini DM, et al. Effect of platelet activating factor-acetylhydrolase on the formation and action of minimally oxidized low density lipoprotein. J Clin Invest. 1995;95:774–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Pacifici RE, Davies KJA. Protein, lipid and DNA repair systems in oxidative stress: the free-radical theory of aging revisited. Gerontology. 1991;37:166–80.

    CAS  PubMed  Google Scholar 

  84. Fagbemi AF, Orelli B, Schärer OD. Regulation of endonuclease activity in human nucleotide excision repair. DNA Repair. 2011;10:722–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Bürkle A. DNA repair and PARP in aging. Free Radic Res. 2006;40:1295–302.

    PubMed  Google Scholar 

  86. Dean RT, Fu SL, Stocker R, Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J. 1997;324(Pt. 1):1–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta. 2005;1703:93–109.

    CAS  PubMed  Google Scholar 

  88. Petropoulos I, Friguet B. Maintenance of proteins and aging: the role of oxidized protein repair. Free Radic Res. 2006;40:1269–76.

    CAS  PubMed  Google Scholar 

  89. Dizdaroglu M, Jaruga P. Mechanisms of free radical-induced damage to DNA. Free Radic Res. 2012;46:382–419.

    CAS  PubMed  Google Scholar 

  90. Niki E, Yoshida Y, Saito Y, Noguchi N. Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun. 2005;338:668–76.

    CAS  PubMed  Google Scholar 

  91. Yoshida Y, Umeno A, Shichiri M. Lipid peroxidation biomarkers for evaluating oxidative stress and assessing antioxidant capability in vivo. J Clin Biochem Nutr. 2013;52:9–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Niki E. Lipid peroxidation products as oxidative stress biomarkers. Biofactors. 2008;34:171–80.

    CAS  PubMed  Google Scholar 

  93. Maccarrone M, Melino G, Finazzi-Agró A. Lipoxygenases and their involvement in programmed cell death. Cell Death Differ. 2001;8:776–84.

    CAS  PubMed  Google Scholar 

  94. Stadtman ER. Protein oxidation and aging. Free Radic Res. 2006;40:1250–8.

    CAS  PubMed  Google Scholar 

  95. Davies MJ. Protein and peptide alkoxyl radicals can give rise to C terminal decarboxylation and backbone cleavage. Arch Biochem Biophys. 1996;336:163–72.

    CAS  PubMed  Google Scholar 

  96. Vilar-Rojas C, Guzmán-Grenfell AM, Hicks JJ. Participation of oxygen-free radicals in the oxido-reduction of proteins. Arch Med Res. 1996;27:1–6.

    CAS  PubMed  Google Scholar 

  97. Ames BN. Prevention of mutation, cancer, and other age-associated diseases by optimizing micronutrient intake. J Nucleic Acids. 2010. doi:10.4061/2010/725071.

    PubMed Central  PubMed  Google Scholar 

  98. Sohal RS. Role of oxidative stress and protein oxidation in the aging process. Free Radic Biol Med. 2002;33:37–44.

    CAS  PubMed  Google Scholar 

  99. Dyer DG, Blackledge JA, Thorpe SR, Baynes JW. Formation of pentosidine during nonenzymatic browning of proteins by glucose. Identification glucose other carbohydrates as possible precursors pentosidine in vivo. J Biol Chem. 1991;266:11654–60.

    CAS  PubMed  Google Scholar 

  100. Dyer DG, Dunn JA, Thorpe SR, Bailie KE, Lyons TJ, McCance DR, et al. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest. 1993;91:2463–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001;44:129–46.

    CAS  PubMed  Google Scholar 

  102. Nagai R, Unno Y, Hayashi MC, Masuda S, Hayase F, Kinae N, et al. Peroxynitrite induces formation of Nε(carboxymethyl)lisina by the cleavage of Amarodi product and generation of glucosone and glyoxal. Novel pathways for protein modification by peroxynitrite. Diabetes. 2002;51:2833–9.

    CAS  PubMed  Google Scholar 

  103. Beckman KB, Ames BN. Oxidative decay of DNA. J Biol Chem. 1997;272:19633–6.

    CAS  PubMed  Google Scholar 

  104. Aust AE, Eveleigh JF. Mechanisms of DNA oxidation. Proc Soc Exp Biol Med. 1999;222:246–52.

    CAS  PubMed  Google Scholar 

  105. de Zwart LL, Meerman JHN, Commandeur JNM, Vermeulen NPE. Biomarkers of free radical damage applications in experimental animals and in humans. Free Radic Biol Med. 1999;26:202–6.

    PubMed  Google Scholar 

  106. Gredilla R, Garm C, Stevnsner T. Nuclear and mitochondrial DNA repair in selected eukaryotic aging model systems. Oxid Med Cell Longev. 2012;2012:282438. doi:10.1155/2012/282438.

    PubMed Central  PubMed  Google Scholar 

  107. Floyd RA, Carney JM. Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol. 1992;32(Suppl):S22–7.

    CAS  PubMed  Google Scholar 

  108. Wiesner RJ, Zsurka G, Kunz WS. Mitochondrial DNA damage and the aging process – facts and imaginations. Free Radic Res. 2006;40:1284–94.

    CAS  PubMed  Google Scholar 

  109. Lagouge M, Larsson NG. The role of mitochondrial DNA mutations and free radicals in disease and ageing. J Intern Med. 2013;273:529–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Pelle E, Jian J, Declercq L, Dong K, Yang Q, Pourzand C, Maes D, Pernodet N, Yarosh DB, Huang X. Protection against ultraviolet A-induced oxidative damage in normal human epidermal keratinocytes under post-menopausal conditions by an ultraviolet A-activated caged-iron chelator: a pilot study. Photodermatol Photoimmunol Photomed. 2011;27:231–5.

    CAS  PubMed  Google Scholar 

  111. Peus D, Vasa RA, Beyerle A, Meves A, Krautmacher C, Pittelkow MR. UVB activates ERK1/2 and p38 signaling pathways via reactive oxygen species in cultured keratinocytes. J Invest Dermatol. 1999;112:751–6.

    CAS  PubMed  Google Scholar 

  112. Poljsak B, Dahmane RG, Godic A. Intrinsic skin aging: the role of oxidative stress. Acta Dermatovenerol Alp Pannonica Adriat. 2012;21:33–6.

    PubMed  Google Scholar 

  113. Ma YS, Wu SB, Lee WY, Cheng JS, Wei YH. Response to the increase of oxidative stress and mutation of mitochondrial DNA in aging. Biochim Biophys Acta. 2009;1790:1021–9.

    CAS  PubMed  Google Scholar 

  114. Kanda N, Watanabe S. Regulatory roles of sex hormones in cutaneous biology and immunology. J Dermatol Sci. 2005;38:1–7.

    CAS  PubMed  Google Scholar 

  115. Katsitadze A, Berianidze K, Kaladze K, McHedlishvili T, Sanikidze T. Nitric oxide dependent skin aging mechanism in postmenopausal women. Georgian Med News. 2012;208–209:66–71.

    PubMed  Google Scholar 

  116. McCance DR, Dyer DG, Dunn JA, Bailie KE, Thorpe SR, Baynes JW, et al. Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus. J Clin Invest. 1993;91:2470–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Orciani M, Gorbi S, Benedetti M, Di Benedetto G, Mattioli-Belmonte M, Regoli F, et al. Oxidative stress defense in human-skin-derived mesenchymal stem cells versus human keratinocytes: different mechanisms of protection and cell selection. Free Radic Biol Med. 2010;49:830–8.

    CAS  PubMed  Google Scholar 

  118. Richardson TE, Yu AE, Wen Y, Yang S-H, Simpkins JW. Estrogen prevents oxidative damage to the mitochondria in Friedreich’s ataxia skin fibroblasts. PLoS One. 2012;7(4):e34600. doi:10.1371/journal.pone.0034600.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Kanda N, Watanabe S. 17β-estradiol inhibits oxidative stress-induced apoptosis in keratinocytes by promoting Bcl-2 expression. J Invest Dermatol. 2003;121:1500–9.

    CAS  PubMed  Google Scholar 

  120. Traikovich SS. Use of topical ascorbic acid and its effects on photo damaged skin topography. Arch Otolaryngol Head Neck Surg. 1999;125:1091–8.

    CAS  PubMed  Google Scholar 

  121. Hernandez I, Delgado JL, Diaz J, Quesada T, Teruel MJ, Llanos MC, et al. 17β-estradiol prevents oxidative stress and decrease blood pressure in ovariectomized rats. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1599–605.

    CAS  PubMed  Google Scholar 

  122. Miller AA, De Silva TM, Jackman KA, Sobey CG. Effect of gender and sex hormones on vascular oxidative stress. Clin Exp Pharmacol Physiol. 2007;34:1037–43.

    CAS  PubMed  Google Scholar 

  123. Bednarek-Tupikowska G, Bohdanowicz-Pawlak A, Bidzińska B, Milewicz A, Antonowicz-Juchniewicz J, Andrzejak R. Serum lipid peroxide levels and erythrocyte glutathione peroxidase and superoxide dismutase activity in premenopausal and postmenopausal women. Gynecol Endocrinol. 2001;15:298–303.

    CAS  PubMed  Google Scholar 

  124. Signorelli SS, Neri S, Sciacchitano S, Di Pino L, Costa MP, Marchese G, et al. Behaviour some indicators of oxidative stress in postmenopausal and fertile women. Maturitas. 2006;53:77–82.

    CAS  PubMed  Google Scholar 

  125. Sánchez-Rodríguez MA, Zacarías-Flores M, Arronte-Rosales A, Correa-Muñoz E, Mendoza-Núñez VM. Menopause as risk factor for oxidative stress. Menopause. 2012;19:361–7.

    PubMed  Google Scholar 

  126. Viña J, Borrás C, Gambini J, Sastre J, Pallardo FV. Why females live longer than males? Importance of the upregulation of longevity-associated genes by oestrogenic compounds. FEBS Lett. 2005;579:2541–5.

    PubMed  Google Scholar 

  127. Leal M, Díaz J, Serrano E, Abellán J, Carbonell LF. Hormone replacement therapy for oxidative stress in postmenopausal women with hot flushes. Obstet Gynecol. 2000;95:804–9.

    CAS  PubMed  Google Scholar 

  128. Hachul de Campos H, Brandao LC, Almeida VD, Grego BHC, Bittencourt LR, Tufik S, et al. Sleep disturbances, oxidative stress and cardiovascular risk parameters in postmenopausal women complaining of insomnia. Climacteric. 2006;9:312–9.

    CAS  PubMed  Google Scholar 

  129. Tufik S, Andersen ML, Bittencourt RLA, De Mello MT. Paradoxical sleep deprivation: neurochemical, hormonal and behavioral alterations. Evidence from 30 years of research. An Acad Bras Cienc. 2009;81:521–38.

    PubMed  Google Scholar 

  130. Cabrera T, Guevara-Pérez E, Cuza-Echevarría L, Domenech-García A, Urbizo-Cañón R. Estudio preliminar de indicadores del estrés oxidativo y los síntomas que aquejan con mayor frecuencia a las mujeres climatéricas. Rev Med Electrón. 2006;28(3). Available at: http://www.revmatanzas.sld.cu/revista medica/ano 2006/vol3 2006/tema08.htm.

  131. Bouayed J, Rammal H, Soulimani R. Oxidative stress and anxiety. Oxid Med Cell Longev. 2009;2:63–7.

    PubMed Central  PubMed  Google Scholar 

  132. Tsuboi H, Shimoi K, Kinae N, Oguni I, Hori R, Kobayashi F. Depressive symptoms are independently correlated with lipid peroxidation in a female population. Comparison with vitamins and carotenoids. J Psychosom Res. 2004;56:53–8.

    PubMed  Google Scholar 

  133. Irie M, Miyata M, Kasai H. Depression and possible cancer risk due to oxidative DNA damage. J Psychiatr Res. 2005;39:553–60.

    PubMed  Google Scholar 

  134. Kodydková J, Vávrová L, Zeman M, Jirák R, Macášek J, Staňková B, et al. Antioxidative enzymes and increased oxidative stress in depressive women. Clin Biochem. 2009;42:1368–74.

    PubMed  Google Scholar 

  135. Sánchez-Rodríguez MA, Zacarías-Flores M, Arronte-Rosales A, Mendoza-Núñez VM. Efecto de la terapia hormonal con estrógenos en el estrés oxidativo y la calidad de vida en mujeres posmenopáusicas. Ginecol Obstet Mex. 2013;81:11–22.

    PubMed  Google Scholar 

  136. Igarashi M, Saito H, Morioka Y, Oiji A, Nadaoka T, Kashiwakura M. Stress vulnerability and climacteric symptoms: live events, coping behavior, and severity of symptoms. Gynecol Obstet Invest. 2000;49:170–7.

    CAS  PubMed  Google Scholar 

  137. Binfa L, Castelo-Branco C, Blümel JE, Cancelo MJ, Bonilla H, Muñoz I, et al. Influence of psycho-social factors on climacteric symptoms. Maturitas. 2004;48:425–31.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (DGAPA, UNAM), PAPIIT IN222213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha A. Sánchez-Rodríguez PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sánchez-Rodríguez, M.A., Zacarías-Flores, M., Mendoza-Núñez, V.M. (2015). Menopause and Oxidative Stress. In: Farage, M., Miller, K., Fugate Woods, N., Maibach, H. (eds) Skin, Mucosa and Menopause. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44080-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44080-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44079-7

  • Online ISBN: 978-3-662-44080-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics