Skip to main content

Abstract

Phytophthora infestans is a destructive pathogen of potato and tomato, and a model system for oomycetes, a lineage of mostly filamentous eukaryotes related to diatoms and brown algae. P. infestans has had tremendous impacts on human history and is still a major threat to food security. Advances in our understanding of oomycete biology and evolution have resulted from analyses of the P. infestans genome, population studies, and tests of gene function enabled by technologies for transgene expression and silencing. P. infestans has a large repeat-rich genome with a complex organization of gene-dense and rapidly evolving gene-sparse regions. Transposable elements, horizontal gene transfer, novel gene fusions, and expansions of gene families encoding transporters, signaling proteins, and pathogenesis effectors have shaped the structure and function of the genome. Both classic transcription factor networks and epigenetics influence gene expression, which exhibits dynamic changes during development and infection. Insights into mechanisms of growth and dispersal, metabolism, pathogenesis, and defense against plant resistance and agrochemicals are leading to better strategies for managing P. infestans blights. This chapter describes these advances and challenges for future research in the post-genome era.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ah Fong A, Xiang Q, Judelson HS (2007) Architecture of the sporulation-specific Cdc14 promoter from the oomycete Phytophthora infestans. Eukaryot Cell 6:2222–2230

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ah Fong AM, Judelson HS (2003) Cell cycle regulator Cdc14 is expressed during sporulation but not hyphal growth in the fungus-like oomycete Phytophthora infestans. Molec Microbiol 50:487–494

    Google Scholar 

  • Ah-Fong AM, Bormann-Chung CA, Judelson HS (2008) Optimization of transgene-mediated silencing in Phytophthora infestans and its association with small-interfering RNAs. Fungal Genet Biol 45:1197–1205

    PubMed  CAS  Google Scholar 

  • Ah-Fong AM, Judelson HS (2011) Vectors for fluorescent protein tagging in Phytophthora: tools for functional genomics and cell biology. Fungal Biol 115:882–890

    PubMed  CAS  Google Scholar 

  • Al-Kherb SM, Fininsa C, Shattock RC, Shaw DS (1995) The inheritance of virulence of Phytophthora infestans to potato. Plant Pathol 44:552–562

    Google Scholar 

  • Avila-Adame C, Gomez-Alpizar L, Zismann V, Jones KM, Buell CR, Ristaino JB (2006) Mitochondrial genome sequences and molecular evolution of the Irish potato famine pathogen, Phytophthora infestans. Curr Genet 49:39–46

    PubMed  CAS  Google Scholar 

  • Avrova AO, Boevink PC, Young V, Grenville-Briggs LJ, van West P, Birch PR, Whisson SC (2008) A novel Phytophthora infestans haustorium-specific membrane protein is required for infection of potato. Cell Microbiol 10:2271–2284

    PubMed  CAS  Google Scholar 

  • Bartnicki-Garcia S, Wang MC (1983) Biochemical aspects of morphogenesis in Phytophthora. In: Erwin DC, Bartnicki-Garcia S, Tsao PH (eds) Phytophthora, its biology, taxonomy, ecology, and pathology. APS Press, St. Paul, pp 121–137

    Google Scholar 

  • Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, Thines M, Ah-Fong A, Anderson R, Badejoko W, Bittner-Eddy P, Boore JL, Chibucos MC, Coates M, Dehal P, Delehaunty K, Dong S, Downton P, Dumas B, Fabro G, Fronick C, Fuerstenberg SI, Fulton L, Gaulin E, Govers F, Hughes L, Humphray S, Jiang RH, Judelson H, Kamoun S, Kyung K, Meijer H, Minx P, Morris P, Nelson J, Phuntumart V, Qutob D, Rehmany A, Rougon-Cardoso A, Ryden P, Torto-Alalibo T, Studholme D, Wang Y, Win J, Wood J, Clifton SW, Rogers J, Van den Ackerveken G, Jones JD, McDowell JM, Beynon J, Tyler BM (2010) Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome. Science 330:1549–1551

    PubMed Central  PubMed  CAS  Google Scholar 

  • Beakes GW, Glockling SL, Sekimoto S (2011) The evolutionary phylogeny of the oomycete fungi. Protoplasma 249:3–19

    PubMed  Google Scholar 

  • Blair JE, Coffey MD, Martin FN (2012) Species tree estimation for the late blight pathogen, Phytophthora infestans, and close relatives. PLoS ONE 7:e37003

    PubMed Central  PubMed  CAS  Google Scholar 

  • Blair JE, Coffey MD, Park SY, Geiser DM, Kang S (2008) A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genet Biol 45:266–277

    PubMed  CAS  Google Scholar 

  • Blanco FA, Judelson HS (2005) A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Molec Microbiol 56:638–648

    CAS  Google Scholar 

  • Blum M, Boehler M, Randall E, Young V, Csukai M, Kraus S, Moulin F, Scalliet G, Avrova AO, Whisson SC, Fonne-Pfister R (2010) Mandipropamid targets the cellulose synthase-like PiCesA3 to inhibit cell wall biosynthesis in the oomycete plant pathogen, Phytophthora infestans. Molec Plant Pathol 11:227–243

    CAS  Google Scholar 

  • Bos JIB, Armstrong MR, Gilroy EM, Boevink PC, Hein I, Taylor RM, Tian ZD, Engelhardt S, Vetukuri RR, Harrower B, Dixelius C, Bryan G, Sadanandom A, Whisson SC, Kamoun S, Birch PRJ (2010) Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proc Natl Acad Sci USA 107:9909–9914

    PubMed Central  PubMed  CAS  Google Scholar 

  • Boubakri H, Poutaraud A, Wahab MA, Clayeux C, Baltenweck-Guyot R, Steyer D, Marcic C, Mliki A, Soustre-Gacougnolle I (2013) Thiamine modulates metabolism of the phenylpropanoid pathway leading to enhanced resistance to Plasmopara viticola in grapevine. BMC Plant Biol 13:31

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bourke PMA (1964) Emergence of potato blight 1843-46. Nature 203:805–806

    Google Scholar 

  • Bozkurt TO, Schornack S, Win J, Shindo T, Ilyas M, Oliva R, Cano LM, Jones AME, Huitema E, van der Hoorn RAL, Kamoun S (2011) Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proc Natl Acad Sci USA 108:20832–20837

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cai G, Hillman BI (2013) Phytophthora viruses. Adv Virus Res 86:327–350

    PubMed  Google Scholar 

  • Cai G, Myers K, Hillman BI, Fry WE (2009) A novel virus of the late blight pathogen, Phytophthora infestans, with two RNA segments and a supergroup 1 RNA-dependent RNA polymerase. Virology 392:52–61

    PubMed  CAS  Google Scholar 

  • Cai GH, Myers K, Fry WE, Hillman BI (2012) A member of the virus family Narnaviridae from the plant pathogenic oomycete Phytophthora infestans. Arch Virol 157:165–169

    PubMed  CAS  Google Scholar 

  • Cardenas M, Grajales A, Sierra R, Rojas A, Gonzalez-Almario A, Vargas A, Marin M, Fermin G, Lagos LE, Grunwald NJ, Bernal A, Salazar C, Restrepo S (2011) Genetic diversity of Phytophthora infestans in the Northern Andean region. BMC Genet 12:23

    PubMed Central  PubMed  CAS  Google Scholar 

  • Catal M, King L, Tumbalam P, Wiriyajitsomboon P, Kirk WW, Adams GC (2010) Heterokaryotic nuclear conditions and a heterogeneous nuclear population are observed by flow cytometry in Phytophthora infestans. Cytometry 77:769–775

    PubMed  Google Scholar 

  • Chen Y, Chi HY, Meesapyodsuk D, Qiu X (2013) Phytophthora infestans cholinephosphotransferase with substrate specificity for very-long-chain polyunsaturated fatty acids. Appl Environ Microbiol 79:1573–1579

    PubMed Central  PubMed  CAS  Google Scholar 

  • Clark MC, Melanson DL, Page OT (1978) Purine metabolism and differential inhibition of spore germination in Phytophthora infestans. Can J Microbiol 24:1032–1038

    PubMed  CAS  Google Scholar 

  • Champouret N, Bouwmeester K, Rietman H, van der Lee T, Maliepaard C, Heupink A, van de Vondervoort PJ, Jacobsen E, Visser RG, van der Vossen EA, Govers F, Vleeshouwers VG (2009) Phytophthora infestans isolates lacking class I ipiO variants are virulent on Rpi-blb1 potato. Molec Plant-Microbe Interact 22:1535–1545

    CAS  Google Scholar 

  • Cooke DE, Cano LM, Raffaele S, Bain RA, Cooke LR, Etherington GJ, Deahl KL, Farrer RA, Gilroy EM, Goss EM, Grunwald NJ, Hein I, MacLean D, McNicol JW, Randall E, Oliva RF, Pel MA, Shaw DS, Squires JN, Taylor MC, Vleeshouwers VG, Birch PR, Lees AK, Kamoun S (2012) Genome analyses of an aggressive and invasive lineage of the Irish potato famine pathogen. PLoS Pathog 8:e1002940

    PubMed Central  PubMed  Google Scholar 

  • Cooke DEL, Drenth A, Duncan JM, Wagels G, Brasier CM (2000) A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet Biol 30:17–32

    PubMed  CAS  Google Scholar 

  • Cools HJ, Hammond-Kosack KE (2013) Exploitation of genomics in fungicide research: current status and future perspectives. Mol Plant Pathol 14:197–210

    PubMed  Google Scholar 

  • Cvitanich C, Judelson H (2003) Stable transformation of the oomycete, Phytophthora infestans, using microprojectile bombardment. Curr Genet 42:228–235

    PubMed  CAS  Google Scholar 

  • Damasceno CM, Bishop JG, Ripoll DR, Win J, Kamoun S, Rose JK (2008) Structure of the glucanase inhibitor protein (GIP) family from phytophthora species suggests coevolution with plant endo-beta-1,3-glucanases. Molec Plant-microbe Interact 21:820–830

    CAS  Google Scholar 

  • Davila-Lopez M, Martinez-Guerra JJ, Samuelsson T (2010) Analysis of gene order conservation in eukaryotes identifies transcriptionally and functionally linked genes. PLoS ONE 5:e10654

    PubMed Central  PubMed  Google Scholar 

  • DeBary A (1876) Researches into the nature of the potato fungus Phytophthora infestans. J Roy Agr Soc 12:9–34

    Google Scholar 

  • Delgado RA, Monteros-Altamirano AR, Li Y, Visser RGF, van der Lee TAJ, Vosman B (2013) Large subclonal variation in Phytophthora infestans populations associated with Ecuadorian potato landraces. Plant Pathol 62:1081–1088

    CAS  Google Scholar 

  • Del Sorbo G, Schoonbeek H-J, De Waard MA (2000) Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet Biol 30:1–15

    PubMed  Google Scholar 

  • Dong S, Kong G, Qutob D, Yu X, Tang J, Kang J, Dai T, Wang H, Gijzen M, Wang Y (2012) The NLP toxin family in Phytophthora sojae includes rapidly evolving groups that lack necrosis-inducing activity. Molec Plant-Microbe Interact 25:896–909

    CAS  Google Scholar 

  • Dworkin J, Losick R (2005) Developmental commitment in a bacterium. Cell 121:401–409

    PubMed  CAS  Google Scholar 

  • Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. APS Press, St. Paul, Minn

    Google Scholar 

  • Fabritius A-L, Judelson HS (1997) Mating-type loci segregate aberrantly in Phytophthora infestans but normally in Phytophthora parasitica: implications for models of mating-type determination. Curr Genet 32:60–65

    PubMed  CAS  Google Scholar 

  • Fabritius A-L, Shattock RC, Judelson HS (1997) Genetic analysis of metalaxyl insensitivity loci in Phytophthora infestans using linked DNA markers. Phytopathology 87:1034–1040

    PubMed  CAS  Google Scholar 

  • Farre EM, Geigenberger P, Willmitzer L, Trethewey RN (2000) A possible role for pyrophosphate in the coordination of cytosolic and plastidial carbon metabolism within the potato tuber. Plant Physiol 123:681–688

    PubMed Central  PubMed  CAS  Google Scholar 

  • Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368

    PubMed Central  PubMed  CAS  Google Scholar 

  • Flier WG, Grunwald NJ, Kroon LPNM, van den Bosch TBM, Garay-Serrano E, Lozoya-Saldana H, Bonants PJM, Turkensteen LJ (2002) Phytophthora ipomoeae sp nov., a new homothallic species causing leaf blight on Ipomoea longipedunculata in the Toluca Valley of central Mexico. Mycol Res 106:848–856

    Google Scholar 

  • Fry WE (2008) Phytophthora infestans: the plant (and R gene) destroyer. Molecular Plant Pathol 9:385–402

    Google Scholar 

  • Fry WE, Grunwald NJ, Cooke DEL, McLeod A, Forbes GA, Cao K (2009) Population genetics and population diversity of Phytophthora infestans. In: Lamour K, Kamoun S (eds) Wiley, Hoboken, pp 139–164

    Google Scholar 

  • Fry WE, McGrath MT, Seaman A, Zitter TA, McLeod A, Danies G, Small IM, Myers K, Everts K, Gevens AJ, Gugino BK, Johnson SB, Judelson H, Ristaino J, Roberts R, Secor G, Seebold K, Snover-Clift K, Wyenandt A, Grunwald NJ, Smart CD (2013) The 2009 late blight pandemic in the eastern United States—causes and results. Plant Dis 97:296–306

    Google Scholar 

  • Gamboa-Melendez H, Huerta AI, Judelson HS (2013) bZIP transcription factors in the oomycete Phytophthora infestans with novel DNA-binding domains are Involved in defense against oxidative stress. Eukaryot Cell 12:1403–1412

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gaulin E, Bottin A, Dumas B (2010) Sterol biosynthesis in oomycete pathogens. Plant Signal Behav 5:258–260

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gaulin E, Haget N, Khatib M, Herbert C, Rickauer M, Bottin A (2007) Transgenic sequences are frequently lost in Phytophthora parasitica transformants without reversion of the transgene-induced silenced state. Can J Microbiol 53:152–157

    PubMed  CAS  Google Scholar 

  • Gaulin E, Jauneau A, Villalba F, Rickauer M, Esquerre-Tugaye MT, Bottin A (2002) The CBEL glycoprotein of Phytophthora parasitica var. nicotianae is involved in cell wall deposition and adhesion to cellulosic substrates. J Cell Sci 115:4565–4575

    PubMed  CAS  Google Scholar 

  • Gavino PD, Fry WE (2002) Diversity in and evidence for selection on the mitochondrial genome of Phytophthora infestans. Mycologia 94:781–793

    PubMed  CAS  Google Scholar 

  • Gijzen M, Nurnberger T (2006) Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 67:1800–1807

    PubMed  CAS  Google Scholar 

  • Gomez-Alpizar L, Carbone I, Ristaino JB (2007) An Andean origin of Phytophthora infestans inferred from mitochondrial and nuclear gene genealogies. Proc Natl Acad Sci USA 104:3306–3311

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gong H, Kobayashi K, Sugi T, Takemae H, Kurokawa H, Horimoto T, Akashi H, Kato K (2012) A novel PAN/apple domain-containing protein from Toxoplasma gondii: characterization and receptor identification. PLoS ONE 7:e30169

    PubMed Central  PubMed  CAS  Google Scholar 

  • Goss EM, Cardenas ME, Myers K, Forbes GA, Fry WE, Restrepo S, Grunwald NJ (2011) The plant pathogen Phytophthora andina emerged via hybridization of an unknown Phytophthora species and the Irish potato famine pathogen P. infestans. PloS One 6:e24543

    PubMed Central  PubMed  CAS  Google Scholar 

  • Grenville-Briggs LJ, Anderson VL, Fugelstad J, Avrova AO, Bouzenzana J, Williams A, Wawra S, Whisson SC, Birch PR, Bulone V, van West P (2008) Cellulose synthesis in Phytophthora infestans is required for normal appressorium formation and successful infection of potato. Plant Cell 20:720–738

    PubMed Central  PubMed  CAS  Google Scholar 

  • Grenville-Briggs LJ, Klinter S, Vilaplana F, Inman A, Melida H, Bulone V (2013) Cell wall biology to illuminate mechanisms of pathogenicity in Phytophthora infestans. In: Abstracts of the Oomycete molecular genetics network meeting, Pacific Grove, California, 10–12 March 2013

    Google Scholar 

  • Griffith GW, Shaw DS (1998) Polymorphisms in Phytophthora infestans: four mitochondrial haplotypes are detected after PCR amplification of DNA from pure cultures or from host lesions. Appl Environ Microb 64:4007–4014

    CAS  Google Scholar 

  • Haas BJ, Kamoun S, Zody MC, Jiang RH, Handsaker RE, Cano LM, Grabherr M, Kodira CD, Raffaele S, Torto-Alalibo T, Bozkurt TO, Ah-Fong AM, Alvarado L, Anderson VL, Armstrong MR, Avrova A, Baxter L, Beynon J, Boevink PC, Bollmann SR, Bos JI, Bulone V, Cai G, Cakir C, Carrington JC, Chawner M, Conti L, Costanzo S, Ewan R, Fahlgren N, Fischbach MA, Fugelstad J, Gilroy EM, Gnerre S, Green PJ, Grenville-Briggs LJ, Griffith J, Grunwald NJ, Horn K, Horner NR, Hu CH, Huitema E, Jeong DH, Jones AM, Jones JD, Jones RW, Karlsson EK, Kunjeti SG, Lamour K, Liu Z, Ma L, Maclean D, Chibucos MC, McDonald H, McWalters J, Meijer HJ, Morgan W, Morris PF, Munro CA, O’Neill K, Ospina-Giraldo M, Pinzon A, Pritchard L, Ramsahoye B, Ren Q, Restrepo S, Roy S, Sadanandom A, Savidor A, Schornack S, Schwartz DC, Schumann UD, Schwessinger B, Seyer L, Sharpe T, Silvar C, Song J, Studholme DJ, Sykes S, Thines M, van de Vondervoort PJ, Phuntumart V, Wawra S, Weide R, Win J, Young C, Zhou S, Fry W, Meyers BC, van West P, Ristaino J, Govers F, Birch PR, Whisson SC, Judelson HS, Nusbaum C (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393–398

    PubMed  CAS  Google Scholar 

  • Hahn M, Neef U, Struck C, Gottfert M, Mendgen K (1997) A putative amino acid transporter is specifically expressed in haustoria of the rust fungus Uromyces fabae. Molec Plant-Microbe Interact 10:438–445

    CAS  Google Scholar 

  • Halterman DA, Chen Y, Sopee J, Berduo-Sandoval J, Sanchez-Perez A (2010) Competition between Phytophthora infestans effectors leads to increased aggressiveness on plants containing broad-spectrum late blight resistance. PLoS ONE 5:e10536

    PubMed Central  PubMed  Google Scholar 

  • Haverkort AJ, Boonekamp PM, Hutten R, Jacobsen E, Lotz LAP, Kessel GJT, Visser RGF, van der Vossen EAG (2008) Societal costs of late blight in potato and prospects of durable resistance through cisgenic modification. Potato Res 51:47–57

    Google Scholar 

  • Haverkort AJ, Struik PC, Visser RGF, Jacobsen E (2009) Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Res 52:249–264

    Google Scholar 

  • Hazkani-Covo E, Zeller RM, Martin W (2010) Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet 6:e1000834

    PubMed Central  PubMed  Google Scholar 

  • Hua C, Meijer HJ, de Keijzer J, Zhao W, Wang Y, Govers F (2013) GK4, a G-protein-coupled receptor with a phosphatidylinositol phosphate kinase domain in Phytophthora infestans, is involved in sporangia development and virulence. Molec Microbiol 88:352–370

    CAS  Google Scholar 

  • Iyer LM, Anantharaman V, Wolf MY, Aravind L (2008) Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. Int J Parasitol 38:1–31

    PubMed  CAS  Google Scholar 

  • Judelson HS (2007) Sexual reproduction in plant pathogenic oomycetes. In: Heitman J, Kronstad J, Taylor J, Casselton L (eds) Sex in fungi, molecular determination and evolutionary implications. ASM press, Washington, DC, pp 445–458

    Google Scholar 

  • Judelson HS, Ah-Fong AM (2010) The kinome of Phytophthora infestans reveals oomycete-specific innovations and links to other taxonomic groups. BMC Genom 11:700

    CAS  Google Scholar 

  • Judelson HS, Ah-Fong AM, Aux G, Avrova AO, Bruce C, Cakir C, da Cunha L, Grenville-Briggs L, Latijnhouwers M, Ligterink W, Meijer HJ, Roberts S, Thurber CS, Whisson SC, Birch PR, Govers F, Kamoun S, van West P, Windass J (2008) Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome. Molec Plant-Microbe Interact 21:433–447

    CAS  Google Scholar 

  • Judelson HS, Ah-Fong AM, Fabritius AL (2010) An RNA symbiont enhances heat tolerance and secondary homothallism in the oomycete Phytophthora infestans. Microbiology 156:2026–2034

    PubMed  CAS  Google Scholar 

  • Judelson HS, Blanco FA (2005) The spores of Phytophthora: weapons of the plant destroyer. Nature Microbiol Rev 3:47–58

    CAS  Google Scholar 

  • Judelson HS, Coffey MD, Arredondo FR, Tyler BM (1993a) Transformation of the oomycete pathogen Phytophthora megasperma f. sp. glycinea occurs by DNA integration into single or multiple chromosomes. Curr Genet 23:211–218

    PubMed  CAS  Google Scholar 

  • Judelson HS, Dudler R, Pieterse CMJ, Unkles SE, Michelmore RW (1993b) Expression and antisense inhibition of transgenes in Phytophthora infestans is modulated by choice of promoter and position effects. Gene 133:63–69

    PubMed  CAS  Google Scholar 

  • Judelson HS, Narayan RD, Ah-Fong AM, Kim KS (2009a) Gene expression changes during asexual sporulation by the late blight agent Phytophthora infestans occur in discrete temporal stages. Mol Genet Genom 281:193–206

    CAS  Google Scholar 

  • Judelson HS, Narayan RD, Tani S (2009b) Metabolic adaptation of Phytophthora infestans during growth on leaves, tubers, and artificial media. Molec Plant Pathol 10:843–855

    CAS  Google Scholar 

  • Judelson HS, Senthil GS (2006) Investigating the role of ABC transporters in multifungicide insensitivity in Phytophthora infestans. Molec Plant Pathol 7:17–29

    CAS  Google Scholar 

  • Judelson HS, Shrivastava J, Manson J (2012) Decay of genes encoding the oomycete flagellar proteome in the downy mildew Hyaloperonospora arabidopsidis. PLoS ONE 7:e47624

    PubMed Central  PubMed  CAS  Google Scholar 

  • Judelson HS, Spielman LJ, Shattock RC (1995) Genetic mapping and non-Mendelian segregation of mating type loci in the oomycete, Phytophthora infestans. Genetics 141:503–512

    PubMed Central  PubMed  CAS  Google Scholar 

  • Judelson HS, Tani S (2007) Transgene-induced silencing of the zoosporogenesis-specific PiNIFC gene cluster of Phytophthora infestans involves chromatin alterations. Eukaryot Cell 6:1200–1209

    PubMed Central  PubMed  CAS  Google Scholar 

  • Judelson HS, Tyler BM, Michelmore RW (1991) Transformation of the oomycete pathogen, Phytophthora infestans. Mol. Plant Microbe Interact 4:602–607

    PubMed  CAS  Google Scholar 

  • Judelson HS, Tyler BM, Michelmore RW (1992) Regulatory sequences for expressing genes in oomycete fungi. Molec Gen Genet 234:138–146

    PubMed  CAS  Google Scholar 

  • Kamoun S, Hraber P, Sobral B, Nuss D, Govers F (1999) Initial assessment of gene diversity for the oomycete pathogen Phytophthora infestans based on expressed sequences. Fungal Genet Biol 28:94–106

    PubMed  CAS  Google Scholar 

  • Kamoun S, van West P, Vleeshouwers VG, de Groot KE, Govers F (1998) Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell 10:1413–1426

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kay J, Meijer HJ, ten Have A, van Kan JA (2011) The aspartic proteinase family of three Phytophthora species. BMC Genom 12:254

    CAS  Google Scholar 

  • Keeling PJ (2009) Chromalveolates and the evolution of plastids by secondary endosymbiosis. J Eukaryot Microbiol 56:1–8

    PubMed  CAS  Google Scholar 

  • Kemen E, Gardiner A, Schultz-Larsen T, Kemen AC, Balmuth AL, Robert-Seilaniantz A, Bailey K, Holub E, Studholme DJ, Maclean D, Jones JD (2011) Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana. PLoS Biol 9:e1001094

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kildea S, Quinn L, Mehenni-Ciz J, Cooke DEL, Perez FM, Deahl KL, Griffin D, Cooke LR (2013) Re-emergence of the Ib mitochondrial haplotype within the British and Irish Phytophthora infestans populations. Eur J Plant Pathol 135:237–242

    Google Scholar 

  • Kim KS (2006) Molecular mechanisms governing the development of sporangia in the oomycete phytopathogen Phytophthora infestans. Ph.D. thesis, University of California-Riverside

    Google Scholar 

  • Kim KS, Judelson HS (2003) Sporangia-specific gene expression in the oomyceteous phytopathogen Phytophthora infestans. Eukaryot Cell 2:1376–1385

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kojima KK, Jurka J (2011) Crypton transposons: identification of new diverse families and ancient domestication events. Mob DNA 2:12

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kruglyak S, Tang H (2000) Regulation of adjacent yeast genes. Trends Genet 16:109–111

    PubMed  CAS  Google Scholar 

  • Lapwood DH (1977) Factors affecting the field infection of potato tubers of different cultivars by blight (Phytophthora infestans). Ann Appl Biol 85:23–42

    Google Scholar 

  • Latijnhouwers M, Govers F (2003) A Phytophthora infestans G-protein & β-subunit is involved in sporangium formation. Eukaryot Cell 2:971–977

    PubMed Central  PubMed  CAS  Google Scholar 

  • Latijnhouwers M, Ligterink W, Vleeshouwers VGAA, Van West P, Govers F (2004) A G-alpha subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Molec Microbiol 51:925–936

    CAS  Google Scholar 

  • Lee TY, Mizubuti E, Fry WE (1999) Genetics of metalaxyl resistance in Phytophthora infestans. Fungal Genet Biol 26:118–130

    PubMed  CAS  Google Scholar 

  • Lees AK, Wattier R, Shaw DS, Sullivan L, Wn A, Cooke DEL (2006) Novel microsatellite markers for the analysis of Phytophthora infestans populations. Plant Pathol 55:311–319

    Google Scholar 

  • Levesque CA, Brouwer H, Cano L, Hamilton JP, Holt C, Huitema E, Raffaele S, Robideau GP, Thines M, Win J, Zerillo MM, Beakes GW, Boore JL, Busam D, Dumas B, Ferriera S, Fuerstenberg SI, Gachon CM, Gaulin E, Govers F, Grenville-Briggs L, Horner N, Hostetler J, Jiang RH, Johnson J, Krajaejun T, Lin H, Meijer HJ, Moore B, Morris P, Phuntmart V, Puiu D, Shetty J, Stajich JE, Tripathy S, Wawra S, van West P, Whitty BR, Coutinho PM, Henrissat B, Martin F, Thomas PD, Tyler BM, De Vries RP, Kamoun S, Yandell M, Tisserat N, Buell CR (2010) Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol 11:R73

    PubMed Central  PubMed  Google Scholar 

  • Li Y, van der Lee T, Zhu JH, Jin GH, Lan CZ, Zhu SX, Zhang RF, Liu BW, Zhao ZJ, Kessel G, Huang SW, Jacobsen E (2012a) Population structure of Phytophthora infestans in China—geographic clusters and presence of the EU genotype Blue_13. Plant Pathol 62:932–942

    Google Scholar 

  • Li Y, van der Lee TA, Evenhuis A, van den Bosch GB, van Bekkum PJ, Forch MG, van Gent-Pelzer MP, van Raaij HM, Jacobsen E, Huang SW, Govers F, Vleeshouwers VG, Kessel GJ (2012b) Population dynamics of Phytophthora infestans in the Netherlands reveals expansion and spread of dominant clonal lineages and virulence in sexual offspring. Genes Genom Genet 2:1529–1540

    CAS  Google Scholar 

  • Liaud MF, Lichtle C, Apt K, Martin W, Cerff R (2000) Compartment-specific isoforms of TPI and GAPDH are imported into diatom mitochondria as a fusion protein: evidence in favor of a mitochondrial origin of the eukaryotic glycolytic pathway. Molec Biol Evol 17:213–223

    PubMed  CAS  Google Scholar 

  • Marshall JS, Ashton AR, Govers F, Hardham AR (2001) Isolation and characterization of four genes encoding pyruvate, phosphate dikinase in the oomycete plant pathogen Phytophthora cinnamomi. Curr Genet 40:73–81

    PubMed  CAS  Google Scholar 

  • Martens C, Van de Peer Y (2010) The hidden duplication past of the plant pathogen Phytophthora and its consequences for infection. BMC Genom 11:353

    Google Scholar 

  • Martens C, Vandepoele K, Van de Peer Y (2008) Whole-genome analysis reveals molecular innovations and evolutionary transitions in chromalveolate species. Proc Natl Acad Sci USA 105:3427–3432

    PubMed Central  PubMed  CAS  Google Scholar 

  • Martin MD, Cappellini E, Samaniego JA, Zepeda ML, Campos PF, Seguin-Orlando A, Wales N, Orlando L, Ho SY, Dietrich FS, Mieczkowski PA, Heitman J, Willerslev E, Krogh A, Ristaino JB, Gilbert MT (2013) Reconstructing genome evolution in historic samples of the Irish potato famine pathogen. Nature Comm 4:2172

    Google Scholar 

  • Maumus F, Rabinowicz P, Bowler C, Rivarola M (2011) Stemming epigenetics in marine stramenopiles. Curr Genom 12:357–370

    CAS  Google Scholar 

  • McLeod A, Smart CD, Fry WE (2004) Core promoter structure in the oomycete Phytophthora infestans. Eukaryot Cell 3:91–99

    PubMed Central  PubMed  CAS  Google Scholar 

  • McNeill WH (1999) How the potato changed the world’s history. Soc Res 66:67–83

    CAS  Google Scholar 

  • Meijer HJ, Govers F (2006) Genomewide analysis of phospholipid signaling genes in Phytophthora spp.: novelties and a missing link. Molec Plant-Microbe Interact 19:1337–1347

    CAS  Google Scholar 

  • Meijer HJ, Hassen HH, Govers F (2011) Phytophthora infestans has a plethora of phospholipase D enzymes including a subclass that has extracellular activity. PLoS ONE 6:e17767

    PubMed Central  PubMed  CAS  Google Scholar 

  • Morris PF, Phuntumart V (2009) Inventory and comparative evolution of the ABC superfamily in the genomes of Phytophthora ramorum and Phytophthora sojae. J Molec Evol 68:563–575

    PubMed  CAS  Google Scholar 

  • Morris PF, Schlosser LR, Onasch KD, Wittenschlaeger T, Austin R, Provart N (2009) Multiple horizontal gene transfer events and domain fusions have created novel regulatory and metabolic networks in the oomycete genome. PLoS ONE 4:e6133

    PubMed Central  PubMed  Google Scholar 

  • Mort-Bontemps M, Fevre M (1997) Transformation of the oomycete Saprolegnia monoica to hygromycin B resistance. Curr Genet 31:272–275

    PubMed  CAS  Google Scholar 

  • Nakayama T, Ishida K, Archibald JM (2012) Broad distribution of TPI-GAPDH fusion proteins among eukaryotes: evidence for glycolytic reactions in the mitochondrion? PLoS ONE 7:e52340

    PubMed Central  PubMed  CAS  Google Scholar 

  • Oh SK, Young C, Lee M, Oliva R, Bozkurt TO, Cano LM, Win J, Bos JI, Liu HY, van Damme M, Morgan W, Choi D, Van der Vossen EA, Vleeshouwers VG, Kamoun S (2009) In planta expression screens of Phytophthora infestans RXLR effectors reveal diverse phenotypes, including activation of the Solanum bulbocastanum disease resistance protein Rpi-blb2. Plant Cell 21:2928–2947

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ojika M, Molli SD, Kanazawa H, Yajima A, Toda K, Nukada T, Mao H, Murata R, Asano T, Qi J, Sakagami Y (2011) The second Phytophthora mating hormone defines interspecies biosynthetic crosstalk. Nature Chem Biol 7:591–593

    CAS  Google Scholar 

  • Oliva RF, Kroon LPNM, Chacon G, Flier WG, Ristaino JB, Forbes GA (2010) Phytophthora andina sp nov., a newly identified heterothallic pathogen of solanaceous hosts in the Andean highlands. Plant Pathol 59:613–625

    CAS  Google Scholar 

  • Orsomando G, Lorenzi M, Raffaelli N, Dalla Rizza M, Mezzetti B, Ruggieri S (2001) Phytotoxic protein PcF, purification, characterization, and cDNA sequencing of a novel hydroxyproline-containing factor secreted by the strawberry pathogen Phytophthora cactorum. J Biol Chem 276:21578–21584

    PubMed  CAS  Google Scholar 

  • Park J, Lee S, Choi J, Ahn K, Park B, Park J, Kang S, Lee YH (2008) Fungal cytochrome P450 database. BMC Genom 9:402

    Google Scholar 

  • Paumi CM, Chuk M, Snider J, Stagljar I, Michaelis S (2009) ABC transporters in Saccharomyces cerevisiae and their interactors: new technology advances the biology of the ABCC (MRP) subfamily. Microbiol Molec Biol Rev 3:577–593

    Google Scholar 

  • Peterson PD, Campbell CL, Griffith CS, James E (1992) Teschemacher and the cause and management of potato-blight in the United-States. Plant Dis 76:754–756

    Google Scholar 

  • Pfyffer GE, Pfyffer BU, Rast DM (1986) The polyol pattern, chemotaxonomy, and phylogeny of the fungi. Sydowia 39:160–201

    Google Scholar 

  • Pieterse CMJ, Van West P, Verbakel HM, Brasse PWHM, Van Den Berg-Velthuis GCM, Govers F (1994) Structure and genomic organization of the ipiB and ipiO gene clusters of Phytophthora infestans. Gene 138:67–77

    PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Van’t Klooster J, Van Den Berg-Velthuis GCM, Govers F (1995) NiaA, the structural nitrate reductase gene of Phytophthora infestans: isolation, characterization and expression analysis in Aspergillus nidulans. Curr Genet 27:359–366

    PubMed  CAS  Google Scholar 

  • Prakob W, Judelson HS (2007) Gene expression during oosporogenesis in heterothallic and homothallic Phytophthora. Fungal Genet Biol 44:726–739

    PubMed  CAS  Google Scholar 

  • Pule BB, Meitz JC, Thompson AH, Linde CC, Fry WE, Langenhoven SD, Meyers KL, Kandolo DS, van Rij NC, McLeod A (2013) Phytophthora infestans populations in central, eastern and southern African countries consist of two major clonal lineages. Plant Pathol 62:154–165

    CAS  Google Scholar 

  • Qi J, Asano T, Jinno M, Matsui K, Atsumi K, Sakagami Y, Ojika M (2005) Characterization of a Phytophthora mating hormone. Science 309:1828

    PubMed  CAS  Google Scholar 

  • Qiao Y, Liu L, Xiong Q, Flores C, Wong J, Shi J, Wang X, Liu X, Xiang Q, Jiang S, Zhang F, Wang Y, Judelson HS, Chen X, Ma W (2013) Oomycete pathogens encode RNA silencing suppressors. Nature Genet 45:330–333

    PubMed Central  PubMed  CAS  Google Scholar 

  • Qutob D, Patrick Chapman B, Gijzen M (2013) Transgenerational gene silencing causes gain of virulence in a plant pathogen. Nature Comm 4:1349

    Google Scholar 

  • Raffaele S, Farrer RA, Cano LM, Studholme DJ, MacLean D, Thines M, Jiang RH, Zody MC, Kunjeti SG, Donofrio NM, Meyers BC, Nusbaum C, Kamoun S (2010a) Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science 330:1540–1543

    PubMed  CAS  Google Scholar 

  • Raffaele S, Kamoun S (2012) Genome evolution in filamentous plant pathogens: why bigger can be better. Nature Rev Microbiol 10:417–430

    CAS  Google Scholar 

  • Raffaele S, Win J, Cano LM, Kamoun S (2010b) Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans. BMC Genom 11:637

    Google Scholar 

  • Randall TA, Dwyer RA, Huitema E, Beyer K, Cvitanich C, Kelkar H, Ah Fong AMV, Gates K, Roberts S, Yatzkan E, Gaffney T, Law M, Testa A, Torto T, Zhang M, Zheng L, Mueller E, Windass J, Binder A, Birch PRJ, Gisi U, Govers F, Gow NAR, Mauch F, van West P, Waugh ME, Yu J, Boller T, Kamoun S, Lam ST, Judelson HS (2005) Large-scale gene discovery in the oomycete Phytophthora infestans reveals likely components of phytopathogenicity shared with true fungi. Molec Plant-Microbe Interact 18:229–243

    Google Scholar 

  • Rathbone MC, Smart CD, Fry WE (2002) Isolates of Phytophthora infestans that infect Petunia x hybrida and Nicotiana benthamiana also produce INF1. Phytopathology 92:S145

    Google Scholar 

  • Rayko E, Maumus F, Maheswari U, Jabbari K, Bowler C (2010) Transcription factor families inferred from genome sequences of photosynthetic stramenopiles. New Phytol 188:52–66

    PubMed  CAS  Google Scholar 

  • Richards TA, Soanes DM, Jones MD, Vasieva O, Leonard G, Paszkiewicz K, Foster PG, Hall N, Talbot NJ (2011) Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proc Natl Acad Sci USA 108:15258–15263

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ritch DL, Daggett SS (1995) Nuclear DNA content and chromosome number in german isolates of Phytophthora infestans. Mycologia 87:579–581

    Google Scholar 

  • Ristaino JB (2002) Tracking historic migrations of the Irish potato famine pathogen, Phytophthora infestans. Microbes Infect 4:1369–1377

    PubMed  Google Scholar 

  • Ristaino JB, Groves CT, Parra GR (2001) PCR amplification of the Irish potato famine pathogen from historic specimens. Nature 411:695–697

    PubMed  CAS  Google Scholar 

  • Ristaino JB, Hu CH, Fitt BDL (2012) Evidence for presence of the founder Ia mtDNA haplotype of Phytophthora infestans in 19th century potato tubers from the Rothamsted archives. Plant Pathol 62:492–500

    Google Scholar 

  • Roy S, Kagda M, Judelson HS (2013a) Genome-wide prediction and functional validation of promoter motifs regulating gene expression in spore and infection stages of Phytophthora infestans. PLoS Pathog 9:e1003182

    PubMed Central  PubMed  CAS  Google Scholar 

  • Roy S, Poidevin L, Jiang T, Judelson HS (2013b) Novel core promoter elements in the oomycete pathogen Phytophthora infestans and their influence on expression detected by genome-wide analysis. BMC Genom 14:106

    CAS  Google Scholar 

  • Sansome E, Brasier CM (1973) Diploidy and chromosomal structural hybridity in Phytophthora infestans. Nature 241:344–345

    Google Scholar 

  • Schornack S, van Damme M, Bozkurt TO, Cano LM, Smoker M, Thines M, Gaulin E, Kamoun S, Huitema E (2010) Ancient class of translocated oomycete effectors targets the host nucleus. Proc Natl Acad Sci USA 107:17421–17426

    PubMed Central  PubMed  CAS  Google Scholar 

  • Seidl MF, Van den Ackerveken G, Govers F, Snel B (2011) A domain-centric analysis of oomycete plant pathogen genomes reveals unique protein organization. Plant Physiol 155:628–644

    PubMed Central  PubMed  CAS  Google Scholar 

  • Seidl MF, Van den Ackerveken G, Govers F, Snel B (2012a) Reconstruction of oomycete genome evolution identifies differences in evolutionary trajectories leading to present-day large gene families. Genome Biol Evol 4:199–211

    PubMed Central  PubMed  Google Scholar 

  • Seidl MF, Wang R-P, Van den Ackerveken G, Govers F, Snel B (2013) Bioinformatic inference of specific and general transcription factor binding sites in the plant pathogen Phytophthora infestans. PLoS ONE 7:e51295

    Google Scholar 

  • Seidl MF, Wang RP, Van den Ackerveken G, Govers F, Snel B (2012b) Bioinformatic inference of specific and general transcription factor binding sites in the plant pathogen Phytophthora infestans. PLoS ONE 7:e51295

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shaw DS, Khaki IA (1971) Genetical evidence for diploidy in Phytophthora. Genet Res 17:165–167

    Google Scholar 

  • Slamovits CH, Keeling PJ (2006) Pyruvate-phosphate dikinase of Oxymonads and Parabasalia and the evolution of pyrophosphate-dependent glycolysis in anaerobic eukaryotes. Eukaryot Cell 5:148–154

    PubMed Central  PubMed  CAS  Google Scholar 

  • Smale ST, Kadonaga JT (2003) The RNA polymerase II core promoter. Ann Rev Biochem 72:449–479

    PubMed  CAS  Google Scholar 

  • Sohn J, Voegele RT, Mendgen K, Hahn M (2000) High level activation of vitamin B1 biosynthesis genes in haustoria of the rust fungus Uromyces fabae. Molec Plant-Microbe Interact 13:629–636

    CAS  Google Scholar 

  • Sierra R, Rodriguez LM, Chaves D, Pinzon A, Grajales A, Rojas A, Mutis G, Cardenas M, Burbano D, Jimenez P, Bernal A, Restrepo S (2010) Discovery of Phytophthora infestans genes expressed in planta through mining of cDNA libraries. PLoS ONE 5:e9847

    PubMed Central  PubMed  Google Scholar 

  • Staples RC (2001) Nutrients for a rust fungus: the role of haustoria. Trends Plant Sci 6:496–498

    PubMed  CAS  Google Scholar 

  • Stassen J, Van den Ackerveken G (2011) How do oomycete effectors interfere with plant life? Curr Opin Plant Biol 14:407–414

    PubMed  Google Scholar 

  • Stiller JW, Huang J, Ding Q, Tian J, Goodwillie C (2009) Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses? BMC Genom 10:484

    Google Scholar 

  • Tani S, Judelson HS (2006) Activation of zoosporogenesis-specific genes in Phytophthora infestans involves a 7-nucleotide promoter motif and cold-induced membrane rigidity. Eukaryot Cell 5:745–752

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tian M, Benedetti B, Kamoun S (2005) A Second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato. Plant Physiol 138:1785–1793

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tian M, Win J, Song J, van der Hoorn R, van der Knaap E, Kamoun S (2007) A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiol 143:364–377

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tooley PW, Therrien CD (1987) Cytophotometric determination of the nuclear DNA content of 23 Mexican and 18 non-Mexican isolates of Phytophthora infestans. Exp Mycol 11:19–26

    CAS  Google Scholar 

  • Toquin V, Barja F, Sirven C, Gamet S, Mauprivez L, Peret P, Latorse M-P, Zundel J-L, Schmitt F, Lebrun M-H, Beffa R (2009) Novel tools to identify the mode of action of fungicides as exemplified with fluopicolide. In: Gisi U, Chet I, Gullino M (eds) Recent developments in management of plant Diseases. Springer, New York, pp 19–36

    Google Scholar 

  • Torto TA, Li S, Styer A, Huitema E, Testa A, Gow NA, van West P, Kamoun S (2003) EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Res 13:1675–1685

    PubMed Central  PubMed  CAS  Google Scholar 

  • Torto TA, Rauser L, Kamoun S (2002) The pipg1 gene of the oomycete Phytophthora infestans encodes a fungal-like endopolygalacturonase. Curr Genet 40:385–390

    PubMed  CAS  Google Scholar 

  • Tripathy S, Tyler BM (2006) The repertoire of transfer RNA genes is tuned to codon usage bias in the genomes of Phytophthora sojae and Phytophthora ramorum. Molec Plant-Microbe Interact 19:1322–1328

    CAS  Google Scholar 

  • Tsai HK, Huang PY, Kao CY, Wang D (2009) Co-Expression of neighboring genes in the Zebrafish (Danio rerio) genome. Int J Mol Sci 10:3658–3670

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tyler BM, Kale SD, Wang Q, Tao K, Clark HR, Drews K, Antignani V, Rumore A, Hayes T, Plett JM, Fudal I, Gu B, Chen Q, Affeldt KJ, Berthier E, Fischer GJ, Dou D, Shan W, Keller NP, Martin FM, Rouxel T, Lawrence C (2013) Microbe-independent entry of oomycete RxLR effectors and fungal RxLR-like effectors into plant and animal cells is specific and reproducible. Molec Plant-Microbe Interact 26:611–616

    CAS  Google Scholar 

  • Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RH, Aerts A, Arredondo FD, Baxter L, Bensasson D, Beynon JL, Chapman J, Damasceno CM, Dorrance AE, Dou D, Dickerman AW, Dubchak IL, Garbelotto M, Gijzen M, Gordon SG, Govers F, Grunwald NJ, Huang W, Ivors KL, Jones RW, Kamoun S, Krampis K, Lamour KH, Lee MK, McDonald WH, Medina M, Meijer HJ, Nordberg EK, Maclean DJ, Ospina-Giraldo MD, Morris PF, Phuntumart V, Putnam NH, Rash S, Rose JK, Sakihama Y, Salamov AA, Savidor A, Scheuring CF, Smith BM, Sobral BW, Terry A, Torto-Alalibo TA, Win J, Xu Z, Zhang H, Grigoriev IV, Rokhsar DS, Boore JL (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:1261–1266

    PubMed  CAS  Google Scholar 

  • Uda K, Hoshijima M, Suzuki T (2013) A novel taurocyamine kinase found in the protist Phytophthora infestans. Comp Biochem Phys Part B 165:42–48

    CAS  Google Scholar 

  • Vadnagara K (2010) A tale of three phytopathogens: impact of transposable elements on genome evolution. Dissertation, University of Texas, Arlington

    Google Scholar 

  • Van der Lee T, De Witte I, Drenth A, Alfonso C, Govers F (1997) AFLP linkage map of the oomycete Phytophthora infestans. Fungal Genet Biol 21:278–291

    PubMed  CAS  Google Scholar 

  • Van der Lee T, Testa A, Robold A, van’t Klooster JW, Govers F (2004) High density genetic linkage maps of Phytophthora infestans reveal trisomic progeny and chromosomal rearrangements. Genetics 157:949–956

    Google Scholar 

  • Van West P, Shepherd SJ, Walker CA, Li S, Appiah AA, Grenville-Briggs LJ, Govers F, Gow NA (2008) Internuclear gene silencing in Phytophthora infestans is established through chromatin remodelling. Microbiology 154:1482–1490

    PubMed  Google Scholar 

  • Vetukuri RR, Asman AK, Tellgren-Roth C, Jahan SN, Reimegard J, Fogelqvist J, Savenkov E, Soderbom F, Avrova AO, Whisson SC, Dixelius C (2012) Evidence for small RNAs homologous to effector-encoding genes and transposable elements in the oomycete Phytophthora infestans. PLoS ONE 7:e51399

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vetukuri RR, Avrova AO, Grenville-Briggs LJ, Van West P, Soderbom F, Savenkov EI, Whisson SC, Dixelius C (2011) Evidence for involvement of dicer-like, argonaute and histone deacetylase proteins in gene silencing in Phytophthora infestans. Molec Plant Pathol 12:772–785

    CAS  Google Scholar 

  • Vijn I, Govers F (2003) Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans. Molec Plant Pathol 4:456–467

    Google Scholar 

  • Vleeshouwers VG, Raffaele S, Vossen JH, Champouret N, Oliva R, Segretin ME, Rietman H, Cano LM, Lokossou A, Kessel G, Pel MA, Kamoun S (2011) Understanding and exploiting late blight resistance in the age of effectors. Ann Rev Phytopathol 49:507–531

    CAS  Google Scholar 

  • Vleeshouwers VG, Rietman H, Krenek P, Champouret N, Young C, Oh SK, Wang M, Bouwmeester K, Vosman B, Visser RG, Jacobsen E, Govers F, Kamoun S, Van der Vossen EA (2008) Effector genomics accelerates discovery and functional profiling of potato disease resistance and phytophthora infestans avirulence genes. PLoS ONE 3:e2875

    PubMed Central  PubMed  Google Scholar 

  • Walker CA, Koppe M, Grenville-Briggs LJ, Avrova AO, Horner NR, McKinnon AD, Whisson SC, Birch PR, van West P (2008) A putative DEAD-box RNA-helicase is required for normal zoospore development in the late blight pathogen Phytophthora infestans. Fungal Genet Biol 45:954–962

    PubMed  CAS  Google Scholar 

  • Watson IA (1970) Changes in virulence and population shifts in plant pathogens. Ann Rev Phytopathol 8:209–230

    Google Scholar 

  • Wawra S, Djamei A, Albert I, Nurnberger T, Kahmann R, van West P (2013) In vitro translocation experiments with rxlr-reporter fusion proteins of avr1b from Phytophthora sojae and avr3a from Phytophthora infestans fail to demonstrate specific autonomous uptake in plant and animal cells. Molec Plant-microbe Interact 26:528–536

    CAS  Google Scholar 

  • Weiland JJ (2003) Transformation of Pythium aphanidermatum to geneticin resistance. Curr Genet 42:344–352

    PubMed  CAS  Google Scholar 

  • Whisson SC, Avrova AO, Boevink PC, Armstrong MR, Seman ZA, Hein I, Birch PRJ (2011) Exploiting knowledge of pathogen effectors to enhance late blight resistance in potato. Potato Res 54:325–340

    Google Scholar 

  • Whisson SC, Avrova AO, van West P, Jones JT (2005) A method for double-stranded RNA-mediated transient gene silencing in Phytophthora infestans. Molec Plant Pathol 6:153–163

    CAS  Google Scholar 

  • Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR, Grouffaud S, van West P, Chapman S, Hein I, Toth IK, Pritchard L, Birch PR (2007) A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450:115–118

    PubMed  CAS  Google Scholar 

  • Whisson SC, Randall E, Young, V, Birch PRJ, Cooke DEL, Csukai M (2013) Involvement of RNA polymerase I in mefenoxam insensitivity in Phytophthora infestans. In: Abstracts of the Oomycete Molecular Genetics Network meeting, Pacific Grove, California, 10–12 March 2013

    Google Scholar 

  • Whitaker JW, McConkey GA, Westhead DR (2009) The transferome of metabolic genes explored: analysis of the horizontal transfer of enzyme encoding genes in unicellular eukaryotes. Genome Biol 10:R36

    PubMed Central  PubMed  Google Scholar 

  • Widmark AK, Andersson B, Sandstrom M, Yuen JE (2011) Tracking Phytophthora infestans with SSR markers within and between seasons-a field study in Sweden. Plant Pathol 60:938–945

    CAS  Google Scholar 

  • Win J, Krasileva KV, Kamoun S, Shirasu K, Staskawicz BJ, Banfield MJ (2012) Sequence divergent RXLR effectors share a structural fold conserved across plant pathogenic oomycete species. PLoS Pathog 8:e1002400

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xiang Q, Judelson HS (2010) Myb transcription factors in the oomycete Phytophthora with novel diversified DNA-binding domains and developmental stage-specific expression. Gene 453:1–8

    PubMed  CAS  Google Scholar 

  • Xiang Q, Kim KS, Roy S, Judelson HS (2009) A motif within a complex promoter from the oomycete Phytophthora infestans determines transcription during an intermediate stage of sporulation. Fungal Genet Biol 46:400–409

    PubMed  CAS  Google Scholar 

  • Yaeno T, Shirasu K (2013) The RXLR motif of oomycete effectors is not a sufficient element for binding to phosphatidylinositol monophosphates. Plant Signal Behav 8:e23865

    PubMed  Google Scholar 

  • Yan HZ, Liou RF (2005) Cloning and analysis of pppg1, an inducible endopolygalacturonase gene from the oomycete plant pathogen Phytophthora parasitica. Fungal Genet Biol 42:339–350

    PubMed  CAS  Google Scholar 

  • Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B, Sharma R, Lanz C, Martin FN, Kamoun S, Krause J, Thines M, Weigel D, Burbano HA (2013) The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. eLife 2:e00731

    Google Scholar 

  • Yuen JE, Andersson B (2012) What is the evidence for sexual reproduction of Phytophthora infestans in Europe? Plant Pathol 62:485–491

    Google Scholar 

  • Zadoks JC (2008) The potato murrain on the european continent and the revolutions of 1848. Potato Res 51:5–45

    Google Scholar 

Download references

Acknowledgments

This work was supported by the United States Department of Agriculture-National Institute of Food and Agriculture under grant numbers 2008-35600-04686 and 2011-68004-30154 and the National Science Foundation under grant number 0949426.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard S. Judelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Judelson, H.S. (2014). Phytophthora infestans . In: Dean, R., Lichens-Park, A., Kole, C. (eds) Genomics of Plant-Associated Fungi and Oomycetes: Dicot Pathogens. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44056-8_9

Download citation

Publish with us

Policies and ethics