Skip to main content

Immunohistochemistry of Cancers

  • Chapter
  • First Online:
Cancer Immunology

Abstract

This chapter provides an overview of mostly malignant tumors of various organs with focus on the most common types. The authors have used their own experience in addition to literature review and have discussed the most common and useful immunohistochemistry markers in the diagnosis and differential diagnosis of various malignant tumors. Novel prognostic markers are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moll R, Divo M, Langbein L. The human keratins: biology and pathology. Histochem Cell Biol. 2008;129(6):705–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Freedberg IM, Tomic-Canic M, Komine M, Blumenberg M. Keratins and the keratinocyte activation cycle. J Invest Dermatol. 2001;116(5):633–40.

    CAS  PubMed  Google Scholar 

  3. Wick MR, Swanson PE, Patterson JW. Immunohistology of skin tumors. In: Dabbs DJ, editor. Diagnostic immunohistochemistry. 3rd ed. Philadelphia: Churchill Livingstone Elsevier; 2010. p. 464–99.

    Google Scholar 

  4. Ansai S, Koseki S, Hozumi Y, Kondo S. An immunohistochemical study of lysozyme, CD15 (Leu-M1), and gross cystic disease fluid protein-15 in various skin tumors: assessment of the specificity and sensitivity of markers of apocrine differentiation. Am J Dermatopathol. 1995;17(3):249–55.

    CAS  PubMed  Google Scholar 

  5. Latham JA, Redfern CP, Thody AJ, De Kretser TA. Immunohistochemical markers of human sebaceous gland differentiation. J Histochem Cytochem. 1989;37(5):729–34.

    CAS  PubMed  Google Scholar 

  6. Clarkson KS, Sturdgess IC, Molyneux AJ. The usefulness of tyrosinase in the immunohistochemical assessment of melanocytic lesions: a comparison of the novel T311 antibody (anti-tyrosinase) with S-100, HMB45, and A103 (anti-melan-A). J Clin Pathol. 2001;54(3):196–200.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Lau SK, Chu PG, Weiss LM. Immunohistochemical expression of langerin in Langerhans cell histiocytosis and non-Langerhans cell histiocytic disorders. Am J Surg Pathol. 2008;32(4):615–9.

    PubMed  Google Scholar 

  8. Bickle K, Glass LF, Messina JL, Fenske NA, Siegrist K. Merkel cell carcinoma: a clinical, histopathologic, and immunohistochemical review. Semin Cutan Med Surg. 2004;23(1):46–53.

    PubMed  Google Scholar 

  9. García-Caballero T, Pintos E, Gallego R, Parrado C, Blanco M, Bjornhagen V, et al. MOC-31/Ep-CAM immunoreactivity in Merkel cells and Merkel cell carcinomas. Histopathology. 2003;43(5):480–4.

    PubMed  Google Scholar 

  10. McCalmont TH. Paranuclear dots of neurofilament reliably identify Merkel cell carcinoma. J Cutan Pathol. 2010;37(8):821–3.

    PubMed  Google Scholar 

  11. Dotto JE, Glusac EJ. p63 is a useful marker for cutaneous spindle cell squamous cell carcinoma. J Cutan Pathol. 2006;33(6):413–7.

    PubMed  Google Scholar 

  12. Beer TW, Shepherd P, Theaker JM. Ber EP4 and epithelial membrane antigen aid distinction of basal cell, squamous cell and basosquamous carcinomas of the skin. Histopathology. 2000;37(3):218–23.

    CAS  PubMed  Google Scholar 

  13. Qureshi HS, Ormsby AH, Lee MW, Zarbo RJ, Ma CK. The diagnostic utility of p63, CK5/6, CK7, and CK20 in distinguishing primary cutaneous adnexal neoplasms from metastatic carcinomas. J Cutan Pathol. 2004;31(2):145–52.

    PubMed  Google Scholar 

  14. Yao DX, Hoda SA, Chiu A, Ying L, Rosen PP. Intraepidermal cytokeratin 7 immunoreactive cells in the non-neoplastic nipple may represent interepithelial extension of lactiferous duct cells. Histopathology. 2002;40(3):230–6.

    CAS  PubMed  Google Scholar 

  15. Nowak MA, Guerriere-Kovach P, Pathan A, Campbell TE, Deppisch LM. Perianal Paget’s disease: distinguishing primary and secondary lesions using immunohistochemical studies including gross cystic disease fluid protein-15 and cytokeratin 20 expression. Arch Pathol Lab Med. 1998;122(12):1077–81.

    CAS  PubMed  Google Scholar 

  16. Yoshii N, Kitajima S, Yonezawa S, Matsukita S, Setoyama M, Kanzaki T. Expression of mucin core proteins in extramammary Paget’s disease. Pathol Int. 2002;52(5–6):390–9.

    CAS  PubMed  Google Scholar 

  17. Chaichamnan K, Satayasoontorn K, Puttanupaab S, Attainsee A. Malignant proliferating trichilemmal tumors with CD34 expression. J Med Assoc Thai. 2010;93 Suppl 6:S28–34.

    PubMed  Google Scholar 

  18. Abdelsayed RA, Guijarro-Rojas M, Ibrahim NA, Sangueza OP. Immunohistochemical evaluation of basal cell carcinoma and trichepithelioma using Bcl-2, Ki67, PCNA and P53. J Cutan Pathol. 2000;27(4):169–75.

    CAS  PubMed  Google Scholar 

  19. Krahl D, Sellheyer K. Monoclonal antibody Ber-EP4 reliably discriminates between microcystic adnexal carcinoma and basal cell carcinoma. Cutan Pathol. 2007;34(10):782–7.

    Google Scholar 

  20. Heidarpour M, Rajabi P, Sajadi F. CD10 expression helps to differentiate basal cell carcinoma from trichoepithelioma. Res Med Sci. 2011;16(7):938–44.

    Google Scholar 

  21. Misago N, Narisawa Y. Cytokeratin 15 expression in neoplasms with sebaceous differentiation. J Cutan Pathol. 2006;33(9):634–41.

    PubMed  Google Scholar 

  22. Misago N, Mihara I, Ansai S, Narisawa Y. Sebaceoma and related neoplasms with sebaceous differentiation: a clinicopathologic study of 30 cases. Am J Dermatopathol. 2002;24(4):294–304.

    PubMed  Google Scholar 

  23. Fan YS, Carr RA, Sanders DS, Smith AP, Lazar AJ, Calonje E. Characteristic Ber-EP4 and EMA expression in sebaceoma is immunohistochemically distinct from basal cell carcinoma. Histopathology. 2007;51(1):80–6.

    CAS  PubMed  Google Scholar 

  24. Ansai S, Arase S, Kawana S, Kimura T. Immunohistochemical findings of sebaceous carcinoma and sebaceoma: retrieval of cytokeratin expression by a panel of anti-cytokeratin monoclonal antibodies. J Dermatol. 2011;38(10):951–8.

    PubMed  Google Scholar 

  25. Cabral ES, Auerbach A, Killian JK, Barrett TL, Cassarino DS. Distinction of benign sebaceous proliferations from sebaceous carcinomas by immunohistochemistry. Am J Dermatopathol. 2006;28(6):465–71.

    PubMed  Google Scholar 

  26. Nakajima T, Watanabe S, Sato Y, Kameya T, Hirota T, Shimosato Y. An immunoperoxidase study of S-100 protein distribution in normal and neoplastic tissues. Am J Surg Pathol. 1982;6(8):715–27.

    CAS  PubMed  Google Scholar 

  27. Cochran AJ, Lu HF, Li PX, Saxton R, Wen DR. S100 protein remains a practical marker for melanocytic and other tumors. Melanoma Res. 1993;3:325–30.

    CAS  PubMed  Google Scholar 

  28. Jungbluth AA, Busam KJ, Gerald WL, Stockert E, Coplan KA, Iversen K, et al. A103: an anti-melan-a monoclonal antibody for the detection of malignant melanoma in paraffin-embedded tissues. Am J Surg Pathol. 1998;22(5):595–602.

    CAS  PubMed  Google Scholar 

  29. Lazova R, Tantcheva-Poor I, Sigal AC. P75 nerve growth factor receptor staining is superior to S100 in identifying spindle cell and desmoplastic melanoma. J Am Acad Dermatol. 2010;63(5):852–8.

    CAS  PubMed  Google Scholar 

  30. Barnhill RL, Mihm Jr MC. The histopathology of cutaneous malignant melanoma. Semin Diagn Pathol. 1993;10(1):47–75.

    CAS  PubMed  Google Scholar 

  31. Devoe K, Weidner N. Immunohistochemistry of small round-cell tumors. Semin Diagn Pathol. 2000;17:216–24.

    CAS  PubMed  Google Scholar 

  32. Marin C, Beauchet A, Capper D, Zimmermann U, Julié C, Ilie M, et al. Detection of BRAF p.V600E mutations in melanoma by immunohistochemistry has a good interobserver reproducibility. Arch Pathol Lab Med. 2014;138(1):71–5.

    PubMed  Google Scholar 

  33. Long GV, Wilmott JS, Capper D, Preusser M, Zhang YE, Thompson JF, et al. Immunohistochemistry is highly sensitive and specific for the detection of V600E BRAF mutation in melanoma. J Surg Pathol. 2013;37(1):61–5.

    Google Scholar 

  34. Hazan C, Melzer K, Panageas KS, Li E, Kamino H, Kopf A, Cordon, et al. Evaluation of the proliferation marker MIB-1 in the prognosis of cutaneous malignant melanoma. Cancer. 2002;95(3):634–40.

    CAS  PubMed  Google Scholar 

  35. Sirigu P, Piras F, Minerba L, Murtas D, Maxia C, Colombari R, et al. Prognostic prediction of the immunohistochemical expression of p16 and p53 in cutaneous melanoma: a comparison of two populations from different geographical regions. Eur J Histochem. 2006;50(3):191–8.

    PubMed  Google Scholar 

  36. Flørenes VA, Faye RS, Maelandsmo GM, Nesland JM, Holm R. Levels of cyclin D1 and D3 in malignant melanoma: deregulated cyclin D3 expression is associated with poor clinical outcome in superficial melanoma. Clin Cancer Res. 2000;6(9):3614–20.

    PubMed  Google Scholar 

  37. Conway C, Mitra A, Jewell R, Randerson-Moor J, Lobo S, Nsengimana J, et al. Gene expression profiling of paraffin-embedded primary melanoma using the DASL assay identifies increased osteopontin expression as predictive of reduced relapse-free survival. Clin Cancer Res. 2009;15(22):6939–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. van den Oord JJ, Maes A, Stas M, Nuyts J, De Wever I, De Wolf-Peeters C. Prognostic significance of nm23 protein expression in malignant melanoma. An immunohistochemical study. Melanoma Res. 1997;7(2):121–8.

    PubMed  Google Scholar 

  39. Tucci MG, Lucarini G, Brancorsini D, Zizzi A, Pugnaloni A, Giacchetti A, et al. Involvement of E-cadherin, beta-catenin, Cdc42 and CXCR4 in the progression and prognosis of cutaneous melanoma. Br J Dermatol. 2007;157(6):1212–6.

    CAS  PubMed  Google Scholar 

  40. Bachmann IM, Straume O, Puntervoll HE, Kalvenes MB, Akslen LA. Importance of P-cadherin, beta-catenin, and Wnt5a/frizzled for progression of melanocytic tumors and prognosis in cutaneous melanoma. Clin Cancer Res. 2005;11(24 Pt 1):8606–14.

    CAS  PubMed  Google Scholar 

  41. Robin YM, Guillou L, Michels JJ, Coindre JM. Human herpesvirus 8 immunostaining: a sensitive and specific method for diagnosing Kaposi sarcoma in paraffin-embedded sections. Am J Clin Pathol. 2004;121(3):330–4.

    PubMed  Google Scholar 

  42. Goldblum JR, Tuthill RJ. CD34 and factor-XIIIa immunoreactivity in dermatofibrosarcoma protuberans and dermatofibroma. Am J Dermatopathol. 1997;19(2):147–53.

    CAS  PubMed  Google Scholar 

  43. Kanner WA, Brill 2nd LB, Patterson JW, Wick MR. CD10, p63 and CD99 expression in the differential diagnosis of atypical fibroxanthoma, spindle cell squamous cell carcinoma and desmoplastic melanoma. J Cutan Pathol. 2010;37(7):744–50.

    PubMed  Google Scholar 

  44. Ghanadan A, Abbasi A, Kamyab Hesari K. Cutaneous leiomyoma: novel histologic findings for classification and diagnosis. Acta Med Iran. 2013;51(1):19–24.

    PubMed  Google Scholar 

  45. Perez-Montiel MD, Plaza JA, Dominguez-Malagon H, Suster S. Differential expression of smooth muscle myosin, smooth muscle actin, h-caldesmon, and calponin in the diagnosis of myofibroblastic and smooth muscle lesions of skin and soft tissue. Am J Dermatopathol. 2006;28(2):105–11.

    PubMed  Google Scholar 

  46. Plaza JA, Torres-Cabala C, Evans H, Diwan AH, Prieto VG. Immunohistochemical expression of S100A6 in cellular neurothekeoma: clinicopathologic and immunohistochemical analysis of 31 cases. Am J Dermatopathol. 2009;31(5):419–22.

    PubMed  Google Scholar 

  47. Gnepp DR, editor. Diagnostic surgical pathology of the head and neck. 2nd ed. Philadelphia: Saunders Elsevier; 2009.

    Google Scholar 

  48. Casiraghi O, Lefèvre M. Undifferentiated malignant round cell tumors of the sinonasal tract and nasopharynx. Ann Pathol. 2009;29(4):296–312.

    PubMed  Google Scholar 

  49. Hunt JL. Immunohistology of head and neck neoplasms. In: Dabbs DJ, editor. Diagnostic immunohistochemistry. 3rd ed. Philadelphia: Churchill Livingstone Elsevier; 2010. p. 256–90.

    Google Scholar 

  50. Jeng YM, Sung MT, Fang CL, Huang HY, Mao TL, Cheng W, et al. Sinonasal undifferentiated carcinoma and nasopharyngeal-type undifferentiated carcinoma: two clinically, biologically, and histopathologically distinct entities. Am J Surg Pathol. 2002;26(3):371–6.

    PubMed  Google Scholar 

  51. Haack H, Johnson LA, Fry CJ, Crosby K, Polakiewicz RD, Stelow EB, et al. Diagnosis of NUT midline carcinoma using a NUT-specific monoclonal antibody. Am J Surg Pathol. 2009;33(7):984–91.

    PubMed Central  PubMed  Google Scholar 

  52. Kim JW, Kong IG, Lee C, Kim DY, Rhee CS, Min YG, et al. Expression of Bcl-2 in olfactory neuroblastoma and its association with chemotherapy and survival. Otolaryngol Head Neck Surg. 2008;139(5):708–12.

    PubMed  Google Scholar 

  53. Faragalla H, Weinreb I. Olfactory neuroblastoma: a review and update. Adv Anat Pathol. 2009;16:322–31.

    CAS  PubMed  Google Scholar 

  54. Yu CH, Chen HH, Liu CM, Jeng YM, Wang JT, Wang YP, et al. HMB-45 may be a more sensitive maker than S-100 or Melan-A for immunohistochemical diagnosis of primary oral and nasal mucosal melanomas. J Oral Pathol Med. 2005;34(9):540–5.

    PubMed  Google Scholar 

  55. Cessna MH, Zhou H, Perkins SL, Tripp SR, Layfield L, Daines C, et al. Are myogenin and myoD1 expression specific for rhabdomyosarcoma? A study of 150 cases, with emphasis on spindle cell mimics. Am J Surg Pathol. 2001;25(9):1150–7.

    CAS  PubMed  Google Scholar 

  56. Babin E, Rouleau V, Vedrine PO, Toussaint B, de Raucourt D, Malard O, et al. Small cell neuroendocrine carcinoma of the nasal cavity and paranasal sinuses. J Laryngol Otol. 2006;120(4):289–97.

    CAS  PubMed  Google Scholar 

  57. Folpe AL, Hill CE, Parham DM, O’Shea PA, Weiss SW. Immunohistochemical detection of FLI-1 protein expression: a study of 132 round cell tumors with emphasis on CD99-positive mimics of Ewing’s sarcoma/primitive neuroectodermal tumor. Am J Surg Pathol. 2000;24(12):1657–62.

    CAS  PubMed  Google Scholar 

  58. Gallo O, Graziani P, Fini-Storchi O. Undifferentiated carcinoma of the nose and paranasal sinuses. An immunohistochemical and clinical study. Ear Nose Throat J. 1993;72(9):588–90, 593–5.

    CAS  PubMed  Google Scholar 

  59. Smith SR, Som P, Fahmy A, Lawson W, Sacks S, Brandwein M. A clinicopathological study of sinonasal neuroendocrine carcinoma and sinonasal undifferentiated carcinoma. Laryngoscope. 2000;110(10 Pt 1):1617–22.

    CAS  PubMed  Google Scholar 

  60. Marur S, D’Souza G, Westra WH, Forastiere AA. HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol. 2010;11(8):781–9.

    PubMed  Google Scholar 

  61. Bisht M, Bist SS. Human papilloma virus: a new risk factor in a subset of head and neck cancers. J Cancer Res Ther. 2011;7(3):251–5.

    PubMed  Google Scholar 

  62. Begum S, Westra WH. Basaloid squamous cell carcinoma of the head and neck is a mixed variant that can be further resolved by HPV status. Am J Surg Pathol. 2008;32(7):1044–50.

    PubMed  Google Scholar 

  63. Luo WR, Chen XY, Li SY, Wu AB, Yao KT. Neoplastic spindle cells in nasopharyngeal carcinoma show features of epithelial-mesenchymal transition. Histopathology. 2012;61(1):113–22.

    PubMed  Google Scholar 

  64. Franchi A, Moroni M, Massi D, Paglierani M, Santucci M. Sinonasal undifferentiated carcinoma, nasopharyngeal-type undifferentiated carcinoma, and keratinizing and nonkeratinizing squamous cell carcinoma express different cytokeratin patterns. Am J Surg Pathol. 2002;26(12):1597–604.

    PubMed  Google Scholar 

  65. Cerilli LA, Holst VA, Brandwein MS, Stoler MH, Mills SE. Sinonasal undifferentiated carcinoma: immunohistochemical profile and lack of EBV association. Am J Surg Pathol. 2001;25(2):156–63.

    CAS  PubMed  Google Scholar 

  66. Zidar N, Gale N, Kojc N, Volavsek M, Cardesa A, Alos L, et al. Cadherin-catenin complex and transcription factor Snail-1 in spindle cell carcinoma of the head and neck. Virchows Arch. 2008;453(3):267–74.

    CAS  PubMed  Google Scholar 

  67. Cheuk W, Chan JKC. Salivary gland tumors. In: Fletcher 3rd CDM, editor. Diagnostic histopathology of tumors. Philadelphia: Churchill Livingstone Elsevier; 2007.

    Google Scholar 

  68. Nagao T, Sato E, Inoue R, Oshiro H, H Takahashi R, Nagai T, et al. Immunohistochemical analysis of salivary gland tumors: application for surgical pathology practice. Acta Histochem Cytochem. 2012;45(5):269–82.

    PubMed Central  PubMed  Google Scholar 

  69. Andreadis D, Epivatianos A, Poulopoulos A, Nomikos A, Papazoglou G, Antoniades D, et al. Detection of C-KIT (CD117) molecule in benign and malignant salivary gland tumours. Oral Oncol. 2006;42(1):57–65.

    CAS  PubMed  Google Scholar 

  70. Penner CR, Folpe AL, Budnick SD. C-kit expression distinguishes salivary gland adenoid cystic carcinoma from polymorphous low-grade adenocarcinoma. Mod Pathol. 2002;15(7):687–91.

    PubMed  Google Scholar 

  71. Lee JH, Lee JH, Kim A, Kim I, Chae YS. Unique expression of MUC3, MUC5AC and cytokeratins in salivary gland carcinomas. Pathol Int. 2005;55(7):386–90.

    CAS  PubMed  Google Scholar 

  72. Handra-Luca A, Lamas G, Bertrand JC, Fouret P. MUC1, MUC2, MUC4, and MUC5AC expression in salivary gland mucoepidermoid carcinoma: diagnostic and prognostic implications. Am J Surg Pathol. 2005;29(7):881–9.

    PubMed  Google Scholar 

  73. Seethala RR, Barnes EL, Hunt JL. Epithelial-myoepithelial carcinoma: a review of the clinicopathologic spectrum and immunophenotypic characteristics in 61 tumors of the salivary glands and upper aerodigestive tract. Am J Surg Pathol. 2007;31(1):44–57.

    PubMed  Google Scholar 

  74. Meer S, Altini M. CK7+/CK20- immunoexpression profile is typical of salivary gland neoplasia. Histopathology. 2007;51(1):26–32.

    CAS  PubMed  Google Scholar 

  75. Azevedo RS, de Almeida OP, Kowalski LP, Pires FR. Comparative cytokeratin expression in the different cell types of salivary gland mucoepidermoid carcinoma. Head Neck Pathol. 2008;2:257–64.

    PubMed Central  PubMed  Google Scholar 

  76. Darling MR, Schneider JW, Phillips VM. Polymorphous low-grade adenocarcinoma and adenoid cystic carcinoma: a review and comparison of immunohistochemical markers. Oral Oncol. 2002;38(7):641–5.

    PubMed  Google Scholar 

  77. Epivatianos A, Iordanides S, Zaraboukas T, Antoniades D. Adenoid cystic carcinoma and polymorphous low-grade adenocarcinoma of minor salivary glands: a comparative immunohistochemical study using the epithelial membrane and carcinoembryonic antibodies. Oral Dis. 2005;11(3):175–80.

    CAS  PubMed  Google Scholar 

  78. Edwards PC, Bhuiya T, Kelsch RD. Assessment of p63 expression in the salivary gland neoplasms adenoid cystic carcinoma, polymorphous low-grade adenocarcinoma, and basal cell and canalicular adenomas. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97(5):613–9.

    PubMed  Google Scholar 

  79. Farrell T, Chang YL. Basal cell adenocarcinoma of minor salivary gland. Arch Pathol Lab Med. 2007;131(10):1602–4.

    PubMed  Google Scholar 

  80. Moriki T, Ueta S, Takahashi T, Mitani M, Ichien M. Salivary duct carcinoma: cytologic characteristics and application of androgen receptor immunostaining for diagnosis. Cancer. 2001;93(5):344–50.

    CAS  PubMed  Google Scholar 

  81. Johnson CJ, Barry MB, Vasef MA, et al. Her-2/neu expression in salivary duct carcinoma: an immunohistochemical and chromogenic in situ hybridization study. Appl Immunohistochem Mol Morphol. 2008;16(1):54–8.

    CAS  PubMed  Google Scholar 

  82. Schwartz LE, Begum S, Westra WH, Bishop JA. GATA3 Immunohistochemical expression in salivary gland neoplasms. Head Neck Pathol. 2013;7(4):311–5.

    PubMed Central  PubMed  Google Scholar 

  83. DeLellis RA, Shin SJ, Treaba DO. Immunohistology of endocrine tumors. In: Dabbs DJ, editor. Diagnostic immunohistochemistry. 3rd ed. Philadelphia: Churchill Livingstone Elsevier; 2010. p. 298–313.

    Google Scholar 

  84. Liu H, Lin F, DeLellis RA. Thyroid and parathyroid gland. In: Lin F, Prichard J, editors. Handbook of practical immunohistochemistry. 1st ed. New York: Springer; 2011. p. 137–58.

    Google Scholar 

  85. Fischer S, Asa SL. Application of immunohistochemistry to thyroid neoplasms. Arch Pathol Lab Med. 2008;132(3):359–72.

    PubMed  Google Scholar 

  86. Cheung CC, Ezzat S, Freeman JL, Rosen IB, Asa SL. Immunohistochemical diagnosis of papillary thyroid carcinoma. Mod Pathol. 2001;14(4):338–42.

    CAS  PubMed  Google Scholar 

  87. Kragsterman B, Grimelius L, Wallin G, et al. Cytokeratin 19 expression in papillary thyroid carcinoma. Appl Immunohistochem. 1999;7:181–5.

    CAS  Google Scholar 

  88. Ordonez NG. Thyroid transcription factor-1 is a marker of lung and thyroid carcinomas. Adv Anat Pathol. 2000;7(2):123–7.

    CAS  PubMed  Google Scholar 

  89. Albores-Saavedra J, Nadji M, Civantos F, Morales AR. Thyroglobulin in carcinoma of the thyroid: an immunohistochemical study. Hum Pathol. 1983;14(1):62–6.

    CAS  PubMed  Google Scholar 

  90. Liles N, Hamilton G, Shen SS, Krishnan B, Truong LD. PAX-8 is a sensitive marker for thyroid differentiation. Comparison with PAX-2, TTF-1 and thyroglobulin [USCAP abstract 573]. Mod Pathol. 2010;23(Suppl ls):130A.

    Google Scholar 

  91. Nonaka D, Tang Y, Chiriboga L, Rivera M, Ghossein R. Diagnostic utility of thyroid transcription factors Pax8 and TTF-2 (FoxE1) in thyroid epithelial neoplasms. Mod Pathol. 2008;21(2):192–200.

    CAS  PubMed  Google Scholar 

  92. Katoh R, Miyagi E, Nakamura N, Li X, Suzuki K, Kakudo K, et al. Expression of thyroid transcription factor-1 (TTF-1) in human C cells and medullary thyroid carcinomas. Hum Pathol. 2000;31(3):386–93.

    CAS  PubMed  Google Scholar 

  93. Uribe M, Fenoglio-Preiser CM, Grimes M, Feind C. Medullary carcinoma of the thyroid gland. Clinical, pathological, and immunohistochemical features with review of the literature. Am J Surg Pathol. 1985;9(8):577–94.

    CAS  PubMed  Google Scholar 

  94. DeLellis RA, Rule AH, Spiler I, Nathanson L, Tashjian Jr AH, Wolfe HJ. Calcitonin and carcinoembryonic antigen as tumor markers in medullary thyroid carcinoma. Am J Clin Pathol. 1978;70(4):587–94.

    CAS  PubMed  Google Scholar 

  95. Miettinen M, Franssila KO. Variable expression of keratins and nearly uniform lack of thyroid transcription factor 1 in thyroid anaplastic carcinoma. Hum Pathol. 2000;31(9):1139–45.

    CAS  PubMed  Google Scholar 

  96. Hurlimann J, Gardiol D, Scazziga B. Immunohistology of anaplastic thyroid carcinoma. A study of 43 cases. Histopathology. 1987;11(6):567–80.

    CAS  PubMed  Google Scholar 

  97. Albores-Saavedra J, Nadji M, Civantos F, Morales AR, Delellis RA. Challenging lesions in the differential diagnosis of endocrine tumors: parathyroid carcinoma. Endocr Pathol. 2008;19(4):221–5.

    Google Scholar 

  98. DeLellis RA. Parathyroid carcinoma: an overview. Adv Anat Pathol. 2005;12(2):53–61.

    PubMed  Google Scholar 

  99. Erickson LA, Jin L, Papotti M, Lloyd RV. Oxyphil parathyroid carcinomas: a clinicopathologic and immunohistochemical study of 10 cases. Am J Surg Pathol. 2002;26(3):344–9.

    PubMed  Google Scholar 

  100. Tomita T. Immunocytochemical staining patterns for parathyroid hormone and chromogranin in parathyroid hyperplasia, adenoma and carcinoma. Endocr Pathol. 1999;10:145–56.

    Google Scholar 

  101. Juhlin CC, Villablanca A, Sandelin K, Haglund F, Nordenström J, Forsberg L, et al. Parafibromin immunoreactivity; its use as an additional diagnostic marker for parathyroid tumor classification. Endocr Relat Cancer. 2007;14:501–12.

    CAS  PubMed  Google Scholar 

  102. Mangray S, Kurek KC, Sabo E, DeLellis RA. Immunohistochemical expression of parafibromin is of limited value in distinguishing parathyroid carcinoma from adenoma. Mod Pathol. 2008;21:108A.

    Google Scholar 

  103. Hatanaka K, Tsuta K, Watanabe K, Sugino K, Uekusa T. Primary pulmonary adenocarcinoma with enteric differentiation resembling metastatic colorectal carcinoma: a report of the second case negative for cytokeratin 7. Pathol Res Pract. 2011;207(3):188–91.

    CAS  PubMed  Google Scholar 

  104. Inamura K, Satoh Y, Okumura S, Nakagawa K, Tsuchiya E, Fukayama M, et al. Pulmonary adenocarcinomas with enteric differentiation Histologic and immunohistochemical characteristics compared with metastatic colorectal cancers and usual pulmonary adenocarcinomas. Am J Surg Pathol. 2005;29:660–5.

    PubMed  Google Scholar 

  105. Beheshti J, Sabo E, Janne PA, et al. TTF-1 positivity is a sensitive predictor of EGFR mutation and treatment response in pulmonary adenocarcinomas, by pathologist interpretation and by image analysis. Mod Pathol. 2008;21:336A.

    Google Scholar 

  106. Hammar SP, Dacic S. Immunohistology of lung and pleural neoplasms. In: Dabbs DJ, editor. Diagnostic immunohistochemistry. New York: Churchill Livingstone; 2009. p. 369–463.

    Google Scholar 

  107. Wirth PR, Legler J, Wright GL. Immunohistochemical evaluation of seven monoclonal antibodies for differentiation of pleural mesothelioma from lung adenocarcinoma. Cancer. 1991;67:655–62.

    CAS  PubMed  Google Scholar 

  108. Chu AY, Litzky LA, Pasha TL, Acs G, Zhang PJ. Utility of D2-40, a novel mesothelial marker, in the diagnosis of malignant mesothelioma. Mod Pathol. 2005;18:105–10.

    CAS  PubMed  Google Scholar 

  109. Hinterberger M, Reineke T, Storz M, Weder W, Vogt P, Moch H. D2-40 and calretinin: a tissue microarray analysis of 341 malignant mesotheliomas with emphasis on sarcomatoid differentiation. Mod Pathol. 2007;20:248–55.

    CAS  PubMed  Google Scholar 

  110. Anderson GG, Weiss LM. Determining tissue of origin for metastatic cancers, meta-analysis and literature review of immunohistochemistry performance. Appl Immunohistochem Mol Morphol. 2010;18:3–8.

    CAS  PubMed  Google Scholar 

  111. Dennis JL, Hvidsten TR, Wit EC, Komorowski J, Bell AK, Downie I, et al. Markers of adenocarcinoma characteristic of the site of origin: development of a diagnostic algorithm. Clin Cancer Res. 2005;11:3766–72.

    CAS  PubMed  Google Scholar 

  112. Gamble AR, Bell JA, Ronan JE, Pearson D, Ellis IO. Use of tumour marker immunoreactivity to identify primary site of metastatic cancer. BMJ. 1993;306:295–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Lagendijk JH, Mullink H, van Diest PJ, Meijer GA, Meijer CJ. Immunohistochemical differentiation between primary adenocarcinomas of the ovary and ovarian metastases of colonic and breast origin. Comparison between a statistical and an intuitive approach. J Clin Pathol. 1999;52:283–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. DeYoung BR, Wick MR. Immunohistologic evaluation of metastatic carcinomas of unknown origin: an algorithmic approach. Semin Diagn Pathol. 2000;17:184–93.

    CAS  PubMed  Google Scholar 

  115. Wee A. Diagnostic utility of immunohistochemistry in hepatocellular carcinoma, its variants and their mimics. Appl Immunohistochem Mol Morphol. 2006;14:266–72.

    PubMed  Google Scholar 

  116. Basturk O, Farris III AB, Adsay NV. Immunohistochemistry of pancreas, biliary tract and liver. In: Dabbs DJ, editor. Diagnostic immunohistochemistry. New York: Churchill Livingstone; 2009. p. 541–93.

    Google Scholar 

  117. Hurrlimann J, Gardiol D. Immunohistochemical characterization of 130 cases of primary hepatic carcinomas. Am J Surg Pathol. 1991;15:280–8.

    Google Scholar 

  118. Ma CK, Zarbo RJ, Frierson HF, Lee MW. Comparative immunohistochemical study of primary and metastatic carcinomas of the liver. Am J Clin Pathol. 1993;99:551–7.

    CAS  PubMed  Google Scholar 

  119. Wee A, Nilsson B. Combined hepatocellular-cholangiocarcinoma: diagnostic challenge in hepatic fine needle aspiration biopsy. Acta Cytol. 1999;43:131–8.

    CAS  PubMed  Google Scholar 

  120. Lau SK, Prakash S, Geller SA, Alsabeh R. Comparative immunohistochemical profile of hepatocellular carcinoma, cholangiocarcinoma, and metastatic adenocarcinoma. Hum Pathol. 2002;33:1175–81.

    PubMed  Google Scholar 

  121. Taniere P, Borghi-Scoazec G, Saurin JC, Lombard-Bohas C, Boulez J, Berger F, et al. Cytokeratin expression in adenocarcinomas of the esophagogastric junction: a comparative study of adenocarcinomas of the distal esophagus and of the proximal stomach. Am J Surg Pathol. 2002;26:1213–21.

    PubMed  Google Scholar 

  122. Driessen A, Nafteux P, Lerut T, Van Raemdonck D, De Leyn P, Filez L, et al. Identical cytokeratin expression pattern CK7+/CK20- in esophageal and cardiac cancer: etiopathological and clinical implications. Mod Pathol. 2004;17:49–55.

    CAS  PubMed  Google Scholar 

  123. Lam KY, Loke SL, Shen XC, Ma LT. Cytokeratin expression in non-neoplastic oesophageal epithelium and squamous cell carcinoma of the oesophagus. Virchows Arch. 1995;426:345–9.

    CAS  PubMed  Google Scholar 

  124. Werling RW, Yaziji H, Bacchi CE, Gown AM. CDX2, a highly sensitive and specific marker of adenocarcinomas of intestinal origin: an immunohistochemical survey of 476 primary and metastatic carcinomas. Am J Surg Pathol. 2003;27:303–10.

    PubMed  Google Scholar 

  125. Kim MA, Lee HS, Yang HK, Kim WH. Cytokeratin expression profile in gastric carcinomas. Hum Pathol. 2004;35:576–81.

    CAS  PubMed  Google Scholar 

  126. Chu PG, Weiss LM. Immunohistochemical characterization of signet-ring cell carcinomas of the stomach, breast, and colon. Am J Clin Pathol. 2004;121:884–92.

    PubMed  Google Scholar 

  127. Chen ZM, Wang HL. Alteration of cytokeratin 7 and cytokeratin 20 expression profile is uniquely associated with tumorigenesis of primary adenocarcinoma of the small intestine. Am J Surg Pathol. 2004;28:1352–9.

    PubMed  Google Scholar 

  128. Zhang MQ, Lin F, Hui P, Chen ZM, Ritter JH, Wang HL. Expression of mucins, SIMA, villin, and CDX2 in small-intestinal adenocarcinoma. Am J Clin Pathol. 2007;128:808–16.

    PubMed  Google Scholar 

  129. Svrcek M, Jourdan F, Sebbagh N, Couvelard A, Chatelain D, Mourra N, et al. Immunohistochemical analysis of adenocarcinoma of the small intestine: a tissue microarray study. J Clin Pathol. 2003;56:898–903.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Berezowski K, Stastny JF, Kornstein MJ. Cytokeratins 7 and 20 and carcinoembryonic antigen in ovarian and colonic carcinoma. Mod Pathol. 1996;9:426–9.

    CAS  PubMed  Google Scholar 

  131. Proca DM, Niemann TH, Porcell AI, DeYoung BR. MOC31 immunoreactivity in primary and metastatic carcinoma of the liver. Report of findings and review of other utilized markers. Appl Immunohistochem Mol Morphol. 2000;8:120–5.

    CAS  PubMed  Google Scholar 

  132. Greenson JK, Huang SC, Herron C, Moreno V, Bonner JD, Tomsho LP, et al. Pathologic predictors of microsatellite instability in colorectal cancer. Am J Surg Pathol. 2009;33:126–33.

    PubMed Central  PubMed  Google Scholar 

  133. Wright CL, Stewart ID. Histopathology and mismatch repair status of 458 consecutive colorectal carcinomas. Am J Surg Pathol. 2003;27:1393–406.

    PubMed  Google Scholar 

  134. Jover R, Paya A, Alenda C, Poveda MJ, Peiró G, Aranda FI, et al. Defective mismatch-repair colorectal cancer: clinicopathologic characteristics and usefulness of immunohistochemical analysis for diagnosis. Am J Clin Pathol. 2004;122:389–94.

    CAS  PubMed  Google Scholar 

  135. Krasinskas AM, Goldsmith JD. Immunohistochemistry of the Gastrointestinal tract. In: Dabbs DJ, editor. Diagnostic immunohistochemistry. New York: Churchill Livingstone; 2009. p. 500–40.

    Google Scholar 

  136. Valentini AM, Armentano R, Pirrelli M, Gentile M, Caruso ML. Immunohistochemical mismatch repair proteins expression in colorectal cancer. Appl Immunohistochem Mol Morphol. 2006;14:42–5.

    CAS  PubMed  Google Scholar 

  137. Longacre TA, Kong CS, Welton ML. Diagnostic problems in anal pathology. Adv Anat Pathol. 2008;15:263–78.

    PubMed  Google Scholar 

  138. Lisovsky M, Patel K, Cymes K, Chase D, Bhuiya T, Morgenstern N. Immunophenotypic characterization of anal gland carcinoma: loss of p63 and cytokeratin 5/6. Arch Pathol Lab Med. 2007;131:1304–11.

    PubMed  Google Scholar 

  139. Ronnett BM, Kurman RJ, Shmookler BM, Sugarbaker PH, Young RH. The morphologic spectrum of ovarian metastases of appendiceal adenocarcinomas: a clinicopathologic and immunohistochemical analysis of tumors often misinterpreted as primary ovarian tumors or metastatic tumors from other gastrointestinal sites. Am J Surg Pathol. 1997;21:1144–55.

    CAS  PubMed  Google Scholar 

  140. Ronnett BM, Shmookler BM, Diener-West M, Sugarbaker PH, Kurman RJ. Immunohistochemical evidence supporting the appendiceal origin of pseudomyxoma peritonei in women. Int J Gynecol Pathol. 1997;16:1–9.

    CAS  PubMed  Google Scholar 

  141. Baker PM, Oliva E. Immunohistochemistry as a tool in the differential diagnosis of ovarian tumors: an update. Int J Gynecol Pathol. 2004;24:39–55.

    Google Scholar 

  142. Park SY, Kim BH, Kim JH, Lee S, Kang GH. Panels of immunohistochemical markers help determine primary sites of metastatic adenocarcinoma. Arch Pathol Lab Med. 2007;131:1561–7.

    CAS  PubMed  Google Scholar 

  143. Chan ES, Alexander J, Swanson PE, Jain D, Yeh MM. PDX-1, CDX-2, T TF-1, and CK7: a reliable immunohistochemical panel for pancreatic neuroendocrine neoplasms. Am J Surg Pathol. 2012;36:737–43.

    PubMed  Google Scholar 

  144. Kiśluk J, Gryko M, Guzińska-Ustymowicz K, Kemona A, Kędra B. Immunohistochemical diagnosis of gastrointestinal stromal tumors – an analysis of 80 cases from 2004 to 2010. Adv Clin Exp Med. 2013;22(1):33–9.

    PubMed  Google Scholar 

  145. Miettinen M, Majidi M, Lasota J. Pathology and diagnostic criteria of gastrointestinal stromal tumors (GISTs): a review. Eur J Cancer. 2002;38 Suppl 5:S39–51.

    PubMed  Google Scholar 

  146. Kloppel G, Rindi G, Anlauf M, Perren A, Komminoth P. Site-specific biology and pathology of gastroenteropancreatic neuroendocrine tumors. Virchows Arch. 2007;451 Suppl 1:S9–27.

    PubMed  Google Scholar 

  147. Bernick PE, Klimstra DS, Shia J, Minsky B, Saltz L, Shi W, et al. Neuroendocrine carcinomas of the colon and rectum. Dis Colon Rectum. 2004;47:163–9.

    CAS  PubMed  Google Scholar 

  148. Alsaad KO, Serra S, Schmitt A, Perren A, Chetty R. Cytokeratins 7 and 20 immunoexpression profile in goblet cell and classical carcinoids of appendix. Endocr Pathol. 2007;18:16–22.

    CAS  PubMed  Google Scholar 

  149. Fletcher CD, editor. Diagnostic histopathology of tumors. 3rd ed. Philadelphia: Churchill Livingstone Elsevier; 2007.

    Google Scholar 

  150. Netto GJ, Epstein JI. Immunohistology of the prostate, bladder, kidney, and testis. In: Dabbs DJ, editor. Diagnostic immunohistochemistry. 3rd ed. Philadelphia: Churchill Livingstone Elsevier; 2010. p. 593–661.

    Google Scholar 

  151. Lin F, Prichard J, editors. Handbook of practical immunohistochemistry. 1st ed. New York: Springer; 2011.

    Google Scholar 

  152. Chu PG, Weiss LM. Modern immunohistochemistry. New York: Cambridge University Press; 2009.

    Google Scholar 

  153. Kim MK, Kim S. Immunohistochemical profile of common epithelial neoplasms arising in the kidney. Appl Immunohistochem Mol Morphol. 2000;10(4):332–8.

    Google Scholar 

  154. Hammerich KH, Ayala GE, Wheeler TM. Application of immunohistochemistry to the genitourinary system (prostate, urinary bladder, testis, and kidney). Arch Pathol Lab Med. 2008;132(3):432–40.

    PubMed  Google Scholar 

  155. Kobayashi N, Matsuzaki O, Shirai S, Aoki I, Yao M, Nagashima Y. Collecting duct carcinoma of the kidney: an immunohistochemical evaluation of the use of antibodies for differential diagnosis. Hum Pathol. 2008;39(9):1350–9.

    CAS  PubMed  Google Scholar 

  156. Yasir S, Herrera L, Gomez-Fernandez C, Reis IM, Umar S, Leveillee R, et al. CD10+ and CK7/RON- immunophenotype distinguishes renal cell carcinoma, conventional type with eosinophilic morphology from its mimickers. Appl Immunohistochem Mol Morphol. 2012;20(5):454–61.

    CAS  PubMed  Google Scholar 

  157. Bakshi N, Kunju LP, Giordano T, Shah RB. Expression of renal cell carcinoma antigen (RCC) in renal epithelial and nonrenal tumors: diagnostic Implications. Appl Immunohistochem Mol Morphol. 2007;15(3):310–5.

    CAS  PubMed  Google Scholar 

  158. Avery AK, Beckstead J, Renshaw AA, Corless CL. Use of antibodies to RCC and CD10 in the differential diagnosis of renal neoplasms. Am J Surg Pathol. 2000;24(2):203–10.

    CAS  PubMed  Google Scholar 

  159. Sharma SG, Gokden M, McKenney JK, Phan DC, Cox RM, Kelly T, et al. The utility of PAX-2 and renal cell carcinoma marker immunohistochemistry in distinguishing papillary renal cell carcinoma from nonrenal cell neoplasms with papillary features. Appl Immunohistochem Mol Morphol. 2010;18(6):494–8.

    CAS  PubMed  Google Scholar 

  160. Tretiakova MS, Sahoo S, Takahashi M, Turkyilmaz M, Vogelzang NJ, Lin F, et al. Expression of alpha-methylacyl-CoA racemase in papillary renal cell carcinoma. Am J Surg Pathol. 2004;28(1):69–76.

    PubMed  Google Scholar 

  161. Cochand-Priollet B, Molinié V, Bougaran J, Bouvier R, Dauge-Geffroy MC, Deslignières S, et al. Renal chromophobe cell carcinoma and oncocytoma. A comparative morphologic, histochemical, and immunohistochemical study of 124 cases. Arch Pathol Lab Med. 1997;121(10):1081–6.

    CAS  PubMed  Google Scholar 

  162. Liu L, Qian J, Singh H, Meiers I, Zhou X, Bostwick DG. Immunohistochemical analysis of chromophobe renal cell carcinoma, renal oncocytoma, and clear cell carcinoma: an optimal and practical panel for differential diagnosis. Arch Pathol Lab Med. 2007;131(8):1290–7.

    PubMed  Google Scholar 

  163. Dorai T, Sawczuk IS, Pastorek J, Wiernik PH, Dutcher JP. The role of carbonic anhydrase IX overexpression in kidney cancer. Eur J Cancer. 2005;41(18):2935–47.

    CAS  PubMed  Google Scholar 

  164. Pan CC, Chen PC, Chiang H. Overexpression of KIT (CD117) in chromophobe renal cell carcinoma and renal oncocytoma. Am J Clin Pathol. 2004;121(6):878–83.

    PubMed  Google Scholar 

  165. Went P, Dirnhofer S, Salvisberg T, Amin MB, Lim SD, Diener PA, et al. Expression of epithelial cell adhesion molecule (EpCam) in renal epithelial tumors. Am J Surg Pathol. 2005;29(1):83–8.

    PubMed  Google Scholar 

  166. Kuehn A, Paner GP, Skinnider BF, Cohen C, Datta MW, Young AN, et al. Expression analysis of kidney-specific cadherin in a wide spectrum of traditional and newly recognized renal epithelial neoplasms: diagnostic and histogenetic implications. Am J Surg Pathol. 2007;31(10):1528–33.

    PubMed  Google Scholar 

  167. Adley BP, Gupta A, Lin F, Luan C, Teh BT, Yang XJ. Expression of kidney-specific cadherin in chromophobe renal cell carcinoma and renal oncocytoma. Am J Clin Pathol. 2006;126(1):79–85.

    CAS  PubMed  Google Scholar 

  168. Southgate J, Harnden P, Trejdosiewicz LK. Cytokeratin expression patterns in normal and malignant urothelium: a review of the biological and diagnostic implications. Histol Histopathol. 1999;14(2):657–64.

    CAS  PubMed  Google Scholar 

  169. Bassily NH, Vallorosi CJ, Akdas G, Montie JE, Rubin MA. Coordinate expression of cytokeratins 7 and 20 in prostate adenocarcinoma and bladder urothelial carcinoma. Am J Clin Pathol. 2000;113(3):383–8.

    CAS  PubMed  Google Scholar 

  170. Desai S, Lim SD, Jimenez RE, Chun T, Keane TE, McKenney JK, et al. Relationship of cytokeratin 20 and CD44 protein expression with WHO/ISUP grade in pTa and pT1 papillary urothelial neoplasia. Mod Pathol. 2000;13(12):1315–23.

    CAS  PubMed  Google Scholar 

  171. McKenney JK, Amin MB. The role of immunohistochemistry in the diagnosis of urinary bladder neoplasms. Semin Diagn Pathol. 2005;22(1):69–87.

    PubMed  Google Scholar 

  172. Parker DC, Folpe AL, Bell J, Oliva E, Young RH, Cohen C, et al. Potential utility of uroplakin III, thrombomodulin, high molecular weight cytokeratin, and cytokeratin 20 in noninvasive, invasive, and metastatic urothelial (transitional cell) carcinomas. Am J Surg Pathol. 2003;27(1):1–10.

    PubMed  Google Scholar 

  173. Mallofré C, Castillo M, Morente V, Solé M. Immunohistochemical expression of CK20, p53, and Ki-67 as objective markers of urothelial dysplasia. Mod Pathol. 2003;16(3):187–91.

    PubMed  Google Scholar 

  174. Røtterud R, Nesland JM, Berner A, Fosså SD. Expression of the epidermal growth factor receptor family in normal and malignant urothelium. BJU Int. 2005;95(9):1344–50.

    PubMed  Google Scholar 

  175. Margulis V, Lotan Y, Karakiewicz PI, Fradet Y, Ashfaq R, Capitanio U, et al. Multi-institutional validation of the predictive value of Ki-67 labeling index in patients with urinary bladder cancer. J Natl Cancer Inst. 2009;101(2):114–9.

    PubMed  Google Scholar 

  176. Pinto AP, Schlecht NF, Woo TY, Crum CP, Cibas ES. Biomarker (ProEx C, p16(INK4A), and MiB-1) distinction of high-grade squamous intraepithelial lesion from its mimics. Mod Pathol. 2008;21:1067–74.

    CAS  PubMed  Google Scholar 

  177. Ansari-Lari MA, Staebler A, Zaino RJ, Shah KV, Ronnett BM. Distinction of endocervical and endometrial adenocarcinomas: immunohistochemical p16 expression correlated with human papillomavirus (HPV) DNA detection. Am J Surg Pathol. 2004;28:160–7.

    PubMed  Google Scholar 

  178. Castrillon DH, Lee KR, Nucci MR. Distinction between endometrial and endocervical adenocarcinoma: an immunohistochemical study. Int J Gynecol Pathol. 2002;21:4–10.

    PubMed  Google Scholar 

  179. Kamoi S, Al-Juboury MI, Akin MR, Silverberg SG. Immunohistochemical staining in the distinction between primary endometrial and endocervical adenocarcinomas: another viewpoint. Int J Gynecol Pathol. 2002;21:217–23.

    PubMed  Google Scholar 

  180. McCluggage WG, Sumathi VP, McBride HA, Patterson A. A panel of immunohistochemical stains, including carcinoembryonic antigen, vimentin, and estrogen receptor, aids the distinction between primary endometrial and endocervical adenocarcinomas. Int J Gynecol Pathol. 2002;21:11–5.

    PubMed  Google Scholar 

  181. McCluggage WG, Jenkins D. p16 immunoreactivity may assist in the distinction between endometrial and endocervical adenocarcinoma. Int J Gynecol Pathol. 2003;22:231–5.

    CAS  PubMed  Google Scholar 

  182. Riethdorf S, Neffen EF, Cviko A, Löning T, Crum CP, Riethdorf L. p16INK4A expression as biomarker for HPV 16-related vulvar neoplasias. Hum Pathol. 2004;35:1477–83.

    CAS  PubMed  Google Scholar 

  183. Mulvany NJ, Allen DG. Differentiated intraepithelial neoplasia of the vulva. Int J Gynecol Pathol. 2008;27:125–35.

    PubMed  Google Scholar 

  184. Park KJ, Bramlage MP, Ellenson LH, Pirog EC. Immunoprofile of adenocarcinomas of the endometrium, endocervix, and ovary with mucinous differentiation. Appl Immunohistochem Mol Morphol. 2009;17:8–11.

    PubMed  Google Scholar 

  185. Santin AD, Bellone S, Gokden M, Palmieri M, Dunn D, Agha J, et al. Overexpression of HER-2/neu in uterine serous papillary cancer. Clin Cancer Res. 2002;8:1271–9.

    CAS  PubMed  Google Scholar 

  186. Santin AD, Bellone S, Van SS, Bushen W, De Las Casas LE, Korourian S, et al. Determination of HER2/neu status in uterine serous papillary carcinoma: comparative analysis of immunohistochemistry and fluorescence in situ hybridization. Gynecol Oncol. 2005;98:24–30.

    CAS  PubMed  Google Scholar 

  187. Odicino FE, Bignotti E, Rossi E, Pasinetti B, Tassi RA, Donzelli C, et al. HER-2/neu overexpression and amplification in uterine serous papillary carcinoma: Comparative analysis of immunohistochemistry, real-time reverse transcription-polymerase chain reaction, and fluorescence in situ hybridization. Int J Gynecol Cancer. 2008;18:14–21.

    CAS  PubMed  Google Scholar 

  188. Hwang H, Quenneville L, Yaziji H, Gown AM. Wilms tumor gene product: sensitive and contextually specific marker of serous carcinomas of ovarian surface epithelial origin. Appl Immunohistochem Mol Morphol. 2004;12:122–6.

    PubMed  Google Scholar 

  189. Ji H, Isacson C, Seidman JD, Kurman RJ, Ronnett BM. Cytokeratins 7 and 20, Dpc4 and MUC5AC in the distinction of metastatic mucinous carcinomas in the ovary from primary ovarian mucinous tumors: Dpc4 assists in identifying metastatic pancreatic carcinomas. Int J Gynecol Pathol. 2002;21:391–400.

    PubMed  Google Scholar 

  190. Deavers MT, Malpica A, Liu J, Broaddus R, Silva EG. Ovarian sex cord-stromal tumors: an immunohistochemical study including a comparison of calretinin and inhibin. Mod Pathol. 2003;16:584–90.

    PubMed  Google Scholar 

  191. McCluggage WG, Young RH. Immunohistochemistry as a diagnostic aid in the evaluation of ovarian tumors. Semin Diagn Pathol. 2005;22:3–32.

    PubMed  Google Scholar 

  192. Bhargava R, Esposito NN, Dabbs DI. Immunohistology of the breast. In: Dabbs DJ, editor. Diagnostic immunohistochemistry. 3rd ed. Philadelphia: Churchill Livingstone Elsevier; 2010. p. 763–819.

    Google Scholar 

  193. Keyhani E, Muhammadnejad A, Karimlou M. Prevalence of HER-2-positive invasive breast cancer: a systematic review from Iran. Asian Pac J Cancer Prev. 2012;13(11):5477–82.

    PubMed  Google Scholar 

  194. Hardy LB, Fitzgibbons PL, Goldsmith JD, Eisen RN, Beasley MB, Souers RJ, et al. Immunohistochemistry validation procedures and practices: a College of American Pathologists survey of 727 laboratories. Arch Pathol Lab Med. 2013;137(1):19–25.

    PubMed  Google Scholar 

  195. Gown AM. Current issues in ER and HER2 testing by IHC in breast cancer. Mod Pathol. 2008;21 Suppl 2:S8–15.

    CAS  PubMed  Google Scholar 

  196. Davion SM, Siziopikou KP, Sullivan ME. Cytokeratin 7: a re-evaluation of the ‘tried and true’ in triple-negative breast cancers. Histopathology. 2012;61(4):660–6.

    PubMed  Google Scholar 

  197. Chia SY, Thike AA, Cheok PY, Tan PH. Utility of mammaglobin and gross cystic disease fluid protein-15 (GCDFP-15) in confirming a breast origin for recurrent tumors. Breast. 2010;19(5):355–9.

    PubMed  Google Scholar 

  198. Reis-Filho JS, Milanezi F, Amendoeira I, Albergaria A, Schmitt FC. Distribution of p63, a novel myoepithelial marker, in fine-needle aspiration biopsies of the breast: an analysis of 82 samples. Cancer. 2003;99(3):172–9.

    CAS  PubMed  Google Scholar 

  199. Dabbs DJ, Bhargava R, Chivukula M. Lobular versus ductal breast neoplasms: the diagnostic utility of p120 catenin. Am J Surg Pathol. 2007;31(3):427–37.

    PubMed  Google Scholar 

  200. Dabbs DJ, Kaplai M, Chivukula M, Kanbour A, Kanbour-Shakir A, Carter GJ. The spectrum of morphomolecular abnormalities of the E-cadherin/catenin complex in pleomorphic lobular carcinoma of the breast. Appl Immunohistochem Mol Morphol. 2007;15(3):260–6.

    CAS  PubMed  Google Scholar 

  201. Weinstein MH, Signoretti S, Loda M. Diagnostic utility of immunohistochemical staining for p63, a sensitive marker of prostatic basal cells. Mod Pathol. 2002;15(12):1302–8.

    PubMed  Google Scholar 

  202. Mhawech P, Uchida T, Pelte MF. Immunohistochemical profile of high-grade urothelial bladder carcinoma and prostate adenocarcinoma. Hum Pathol. 2002;33(11):1136–40.

    PubMed  Google Scholar 

  203. Sheridan T, Herawi M, Epstein JI, Illei PB. The role of P501S and PSA in the diagnosis of metastatic adenocarcinoma of the prostate. Am J Surg Pathol. 2007;31(9):1351–5.

    PubMed  Google Scholar 

  204. Kunju LP, Mehra R, Snyder M, Shah RB. Prostate-specific antigen, high-molecular-weight cytokeratin (clone 34βE12), and/or p63: an optimal immunohistochemical panel to distinguish poorly differentiated prostate adenocarcinoma from urothelial carcinoma. Am J Clin Pathol. 2006;125(5):675–81.

    CAS  PubMed  Google Scholar 

  205. Lippert MC, Bensimon H, Javadpour N. Immunoperoxidase staining of acid phosphatase in human prostatic tissue. J Urol. 1982;128(5):1114–6.

    CAS  PubMed  Google Scholar 

  206. Marchal C, Redondo M, Padilla M, Caballero J, Rodrigo I, García J, et al. Expression of prostate specific membrane antigen (PSMA) in prostatic adenocarcinoma and prostatic intraepithelial neoplasia. Histol Histopathol. 2004;19(3):715–8.

    CAS  PubMed  Google Scholar 

  207. Yin M, Dhir R, Parwani AV. Diagnostic utility of p501s (prostein) in comparison to prostate specific antigen (PSA) for the detection of metastatic prostatic adenocarcinoma. Diagn Pathol. 2007;27(2):41.

    CAS  Google Scholar 

  208. Sung MT, Jiang Z, Montironi R, MacLennan GT, Mazzucchelli R, Cheng L. Alpha-methylacyl-CoA racemase (P504S)/34βE12/p63 triple cocktail stain in prostatic adenocarcinoma after hormonal therapy. Hum Pathol. 2007;38(2):332–41.

    CAS  PubMed  Google Scholar 

  209. Boran C, Kandirali E, Yilmaz F, Serin E, Akyol M. Reliability of the 34βE12, keratin 5/6, p63, bcl-2, and AMACR in the diagnosis of prostate carcinoma. Urol Oncol. 2011;29(6):614–23.

    CAS  PubMed  Google Scholar 

  210. Bahrami A, Ro JY, Ayala AG. An overview of testicular germ cell tumors. Arch Pathol Lab Med. 2007;131(8):1267–80.

    PubMed  Google Scholar 

  211. Emerson RE, Ulbright TM. The use of immunohistochemistry in the differential diagnosis of tumors of the testis and paratestis. Semin Diagn Pathol. 2005;22(1):33–50.

    PubMed  Google Scholar 

  212. Mostofi FK, Sesterhenn IA, Davis Jr CJ. Immunopathology of germ cell tumors of the testis. Semin Diagn Pathol. 1987;4(4):320–41.

    CAS  PubMed  Google Scholar 

  213. Tickoo SK, Hutchinson B, Bacik J, Mazumdar M, Motzer RJ, Bajorin DF, et al. Testicular seminoma: a clinicopathologic and immunohistochemical study of 105 cases with special reference to seminomas with atypical features. Int J Surg Pathol. 2002;10(1):23–32.

    PubMed  Google Scholar 

  214. Wick MR, Swanson PE, Manivel JC. Placental-like alkaline phosphatase reactivity in human tumors: an immunohistochemical study of 520 cases. Hum Pathol. 1987;18:946–54.

    CAS  PubMed  Google Scholar 

  215. Bomeisl PE, MacLennan GT. Spermatocytic seminoma. J Urol. 2007;177(2):734.

    PubMed  Google Scholar 

  216. Kraggerud SM, Berner A, Bryne M, Pettersen EO, Fossa SD. Spermatocytic seminoma as compared to classical seminoma: an immunohistochemical and DNA flow cytometric study. APMIS. 1999;107(3):297–302.

    CAS  PubMed  Google Scholar 

  217. Jones TD, Ulbright TM, Eble JN, Baldridge LA, Cheng L. OCT4 staining in testicular tumors: a sensitive and specific marker for seminoma and embryonal carcinoma. Am J Surg Pathol. 2004;28:935–40.

    PubMed  Google Scholar 

  218. Pallesen G, Hamilton-Dutoit SJ. Ki-1 (CD30) antigen is regularly expressed by tumor cells of embryonal carcinoma. Am J Pathol. 1988;133(3):446–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  219. Leroy X, Augusto D, Leteurtre E, Gosselin B. CD30 and CD117 (c-kit) used in combination are useful for distinguishing embryonal carcinoma from seminoma. J Histochem Cytochem. 2002;50(2):283–5.

    CAS  PubMed  Google Scholar 

  220. Lau SK, Weiss LM, Chu PG. D2-40 immunohistochemistry in the differential diagnosis of seminoma and embryonal carcinoma: a comparative immunohistochemical study with KIT (CD117) and CD30. Mod Pathol. 2007;20:320–5.

    CAS  PubMed  Google Scholar 

  221. Young RH, Koelliker DD, Scully RE. Sertoli cell tumors of the testis, not otherwise specified: a clinicopathologic analysis of 60 cases. Am J Surg Pathol. 1998;22:709–21.

    CAS  PubMed  Google Scholar 

  222. Iczkowski KA, Bostwick DG, Roche PC, Cheville JC. Inhibin A is a sensitive and specific marker for testicular sex cord-stromal tumors. Mod Pathol. 1998;11(8):774–9.

    CAS  PubMed  Google Scholar 

  223. McCluggage WG, Shanks JH, Whiteside C, Maxwell P, Banerjee SS, Biggart JD. Immunohistochemical study of testicular sex cord-stromal tumors, including staining with anti-inhibin antibody. Am J Surg Pathol. 1998;22(5):615–9.

    CAS  PubMed  Google Scholar 

  224. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: International Agency for Research on Cancer; 2008.

    Google Scholar 

  225. His ED. Hematopathology: a volume in foundations in diagnostic pathology series. 2nd ed. Philadelphia: Elsevier Sanders; 2007.

    Google Scholar 

  226. Jaffe ES, Harris NL, Stein H, Vardiman JW, editors. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2001.

    Google Scholar 

  227. Chu PG, Chang KL, Arber DA, Weiss LM. Practical applications of immunohistochemistry in hematolymphoid neoplasms. Ann Diagn Pathol. 1999;3(2):104–33.

    CAS  PubMed  Google Scholar 

  228. Mason DY, Cordell JL, Brown MH, Borst J, Jones M, Pulford K. CD79a: a novel marker for B-cell neoplasms in routinely processed tissue samples. Blood. 1995;86(4):1453–9.

    CAS  PubMed  Google Scholar 

  229. Torlakovic E, Torlakovic G, Nguyen PL, Brunning RD, Delabie J. The value of anti-pax5 immunostaining in routinely fixed and paraffin embedded sections: a novel pan-B and B-cell marker. Am J Surg Pathol. 2002;26:1343–50.

    PubMed  Google Scholar 

  230. Tsang WY, Chan JK, Ng CS, Pau MY. Utility of a paraffin section-reactive CD56 antibody (123C3) for characterization and diagnosis of lymphomas. Am J Surg Pathol. 1996;20(2):202–10.

    CAS  PubMed  Google Scholar 

  231. Falini B, Fizzotti M, Pileri S, Lorenz IC, Hussein S, Bansal M, et al. Bcl-6 protein expression in normal and neoplastic lymphoid tissues. Ann Oncol. 1997;8 Suppl 2:101–4.

    PubMed  Google Scholar 

  232. Watson P, Wood KM, Lodge A, McIntosh GG, Milton I, Piggott NH, et al. Monoclonal antibodies recognizing CD5, CD10 and CD23 in formalin-fixed, paraffin-embedded tissue: production and assessment of their value in the diagnosis of small B-cell lymphoma. Histopathology. 2000;36(2):145–50.

    CAS  PubMed  Google Scholar 

  233. Ferry JA, Yang WI, Zukerberg LR, Wotherspoon AC, Arnold A, Harris NL. CD5+ extranodal marginal zone B-cell (MALT) lymphoma. A low grade neoplasm with a propensity for bone marrow involvement and relapse. Am J Clin Pathol. 1996;105(1):31–7.

    CAS  PubMed  Google Scholar 

  234. Dogan A, Bagdi E, Munson P, Isaacson PG. CD10 and BCL-6 expression in paraffin sections of normal lymphoid tissue and B-cell lymphomas. Am J Surg Pathol. 2000;24(6):846–52.

    CAS  PubMed  Google Scholar 

  235. Arends JE, Bot FJ, Gisbertz IA, Schouten HC. Expression of CD10, CD75 and CD43 in MALT lymphoma and their usefulness in discriminating MALT lymphoma from follicular lymphoma and chronic gastritis. Histopathology. 1999;35(3):209–15.

    CAS  PubMed  Google Scholar 

  236. Natkunam Y, Warnke RA, Montgomery K, Falini B, van De Rijn M. Analysis of MUM1/IRF4 protein expression using tissue microarrays and immunohistochemistry. Mod Pathol. 2001;14:686–94.

    CAS  PubMed  Google Scholar 

  237. Swerdlow SH, Yang WI, Zukerberg LR, Harris NL, Arnold A, Williams ME. Expression of cyclin D1 protein in centrocytic/mantle cell lymphomas with and without rearrangement of the BCL1/cyclin D1 gene. Hum Pathol. 1995;26(9):999–1004.

    CAS  PubMed  Google Scholar 

  238. Zukerberg LR, Yang WI, Arnold A, Harris NL. Cyclin D1 expression in non-Hodgkin’s lymphomas. Detection by immunohistochemistry. Am J Clin Pathol. 1995;103(6):756–60.

    CAS  PubMed  Google Scholar 

  239. Lai R, Arber DA, Chang KL, Wilson CS, Weiss LM. Frequency of bcl-2 expression in non-Hodgkin’s lymphoma: a study of 778 cases with comparison of marginal zone lymphoma and monocytoid B-cell hyperplasia. Mod Pathol. 1998;11(9):864–9.

    CAS  PubMed  Google Scholar 

  240. de Melo N, Matutes E, Cordone I, Morilla R, Catovksy D. Expression of Ki-67 nuclear antigen in B and T cell lymphoproliferative disorders. J Clin Pathol. 1992;45(8):660–3.

    PubMed Central  PubMed  Google Scholar 

  241. Nakamura S, Akazawa K, Yao T, Tsuneyoshi M. A clinicopathologic study of 233 cases with special reference to evaluation with the MIB-1 index. Cancer. 1995;76(8):1313–24.

    CAS  PubMed  Google Scholar 

  242. O’Connell F, Pinkus J, Pinkus G. CDl38 (syndecan-l), a plasma cell marker immunohistochemical profile in hematopoietic and nonhematopoietic neoplasms. Am J Clin Pathol. 2004;121:254–63.

    PubMed  Google Scholar 

  243. Chan JK. Peripheral T-cell and NK-cell neoplasms: an integrated approach to diagnosis. Mod Pathol. 1999;12(2):177–99.

    CAS  PubMed  Google Scholar 

  244. Piris M, Brown DC, Gatter KC, Mason DY. CD30 expression in non-Hodgkin’s lymphoma. Histopathology. 1990;17:211–8.

    CAS  PubMed  Google Scholar 

  245. Santucci M, Pimpinelli N, Massi D, Kadin ME, Meijer C, Muller-Hermelink H, et al. Cytotoxic/natural killer cell cutaneous lymphomas. Report of EORTC cutaneous lymphoma task force workshop. Cancer. 2003;97:610–27.

    PubMed  Google Scholar 

  246. Miettinen M. Immunohistochemistry of soft tissue tumors. In: Miettinen M, editor. Modern soft tissue pathology: tumors and non-neoplastic conditions. 1st ed. New York: Cambridge University Press; 2010. p. 44–104.

    Google Scholar 

  247. Folpe AL, Gown AM. Immunohistochemistry for analysis of soft tissue tumors. In: Weiss SW, Goldblum JR, editors. Enzinger and Weiss’s soft tissue pathology. Philadelphia: Mosby Elsevier; 2010. p. 129–74.

    Google Scholar 

  248. Wick MR, Hornick JL. Immunohistology of soft tissue and osseous neoplasms. In: Dabbs D, editor. Diagnostic immunohistochemistry. 3rd ed. Philadelphia: Churchill Livingstone Elsevier; 2010. p. 820–89.

    Google Scholar 

  249. Zhu S, Miettinen M. Soft tissue and bone tumors. In: Lin F, Prichard J, editors. Handbook of practical immunohistochemistry. 1st ed. New York: Springer; 2011. p. 435–60.

    Google Scholar 

  250. Lau SK. Tumors soft tissue and bone. In: Chu PG, Weiss LM, editors. Modern immunohistochemistry. New York: Cambridge University Press; 2009. p. 549–633.

    Google Scholar 

  251. Fisher C. The value of electron microscopy and immunohistochemistry in the diagnosis of soft tissue sarcomas: a study of 200 cases. Histopathology. 1990;16(5):441–54.

    CAS  PubMed  Google Scholar 

  252. Carbone A, Gloghini A, Volpe R. The value of immunohistochemistry in the diagnosis of soft tissue sarcomas. Ann Oncol. 1992;3 Suppl 2:S51–4.

    PubMed  Google Scholar 

  253. Swanson PE, Manivel JC, Scheithauer BW. Epithelial membrane antigen reactivity in mesenchymal neoplasms: an immunohistochemical study of 306 soft tissue sarcomas. Surg Pathol. 1989;2:313–22.

    Google Scholar 

  254. Rangdaeng S, Truong LD. Comparative immunohistochemical staining for desmin and muscle-specific actin: a study of 576 cases. Am J Clin Pathol. 1991;96:32–45.

    CAS  PubMed  Google Scholar 

  255. Miettinen M. Antibody specific to muscle actins in the diagnosis and classification of soft tissue tumors. Am J Pathol. 1988;130(1):205–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  256. Schurch W, Skalli O, Seemayer TA, Gabbiani G. Intermediate filament proteins and actin isoforms as markers for soft tissue tumor differentiation and origin. I. Smooth muscle tumors. Am J Pathol. 1987;128:91–103.

    CAS  PubMed Central  PubMed  Google Scholar 

  257. Skalli O, Gabbiani G, Babai F, Seemayer TA, Pizzolato G, Schürch W. Intermediate filament proteins and actin isoforms as markers for soft tissue tumor differentiation and origin.II. Rhabdomyosarcomas. Am J Pathol. 1988;130:515–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  258. Corson JM, Pinkus GS. Intracellular myoglobin – a specific marker for skeletal muscle differentiation in soft tissue sarcomas. Am J Pathol. 1980;103:384–9.

    Google Scholar 

  259. Dias P, Parham DM, Shapiro DN, Tapscott SJ, Houghton PJ. Monoclonal antibodies to the myogenic regulatory protein MyoD1 epitope mapping and diagnostic utility. Cancer Res. 1992;52:6431–9.

    CAS  PubMed  Google Scholar 

  260. Tallini G, Parham DM, Dias P, Cordon-Cardo C, Houghton PJ, Rosai J. Myogenic regulatory protein expression in adult soft tissue sarcomas: a sensitive and specific marker of skeletal muscle differentiation. Am J Pathol. 1994;144:693–701.

    CAS  PubMed Central  PubMed  Google Scholar 

  261. Cui S, Hano H, Harada T, Takai S, Masui F, Ushigome S. Evaluation of new monoclonal anti-MyoD1 and anti-myogenin antibodies for the diagnosis of rhabdomyosarcoma. Pathol Int. 1999;49:62–8.

    CAS  PubMed  Google Scholar 

  262. Cessna MH, Zhou II, Perkins SL, Tripp SR, Layfield L, Daines C, et al. Are myogenin and MyoD 1 expression specific for rhabdomyosarcoma? A study of 150 cases, with emphasis on spindle cell mimics. Am I Surg Pathol. 2001;25(9):1150–7.

    CAS  Google Scholar 

  263. Ceballos KM, Nielsen GP, Selig MK, O’Connell JX. Is anti-h-caldesmon useful for distinguishing smooth muscle and myofibroblastic tumors? An immunohistochemical study. Am J Clin Pathol. 2001;14:746–53.

    Google Scholar 

  264. Robin YM, Penel N, Pérot G, Neuville A, Vélasco V, Ranchère-Vince D, et al. Transgelin is a novel marker of smooth muscle differentiation that improves diagnostic accuracy of leiomyosarcomas: a comparative immunohistochemical reappraisal of myogenic markers in 900 soft tissue tumors. Mod Pathol. 2013;26(4):502–10.

    CAS  PubMed  Google Scholar 

  265. Mechtersheimer G, Staudter M, Moller P. Expression of the natural killer cell-associated antigens, CD56 and CD57 in human neural and striated muscle cells and their tumors. Cancer Res. 1991;51:1300–7.

    CAS  PubMed  Google Scholar 

  266. Garin-Chesa P, Fellinger EJ, Huvos AG, Beresford HR, Melamed MR, Triche TJ, et al. Immunohistochemical analysis of neural cell adhesion molecules. Am J Pathol. 1991;139:275–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  267. Arber DA, Weiss LM. CD57 – a review. Appl Immunohistochem. 1995;3:137–52.

    CAS  Google Scholar 

  268. Burgdorf WHC, Mukai K, Rosai J. Immunohistochemical identification of factor VIII-related antigen in endothelial cells of cutaneous lesions of alleged vascular nature. Am J Clin Pathol. 1981;75:167–71.

    CAS  PubMed  Google Scholar 

  269. Miettinen M, Lindenmayer AE, Chaubal A. Endothelial cell markers CD31, CD34, and BNH9 antibody to H- and Y-antigens – evaluation of their specificity and sensitivity in the diagnosis of vascular tumors and comparison with von Willebrand’s factor. Mod Pathol. 1994;7:82–90.

    CAS  PubMed  Google Scholar 

  270. McKenney JK, Weiss SW, Folpe AL. CD31 expression in intratumoral macrophages: a potential diagnostic pitfall. Am J Surg Pathol. 2001;25:1167–73.

    CAS  PubMed  Google Scholar 

  271. van de Rijn M, Rouse RV. CD34 – a review. Appl Immunohistochem. 1994;2:71–80.

    Google Scholar 

  272. Soini Y, Miettinen M. Alpha-1-antitrypsin and lysozyme. Their limited significance in fibrohistiocytic tumors. Am J Clin Pathol. 1989;91:515–21.

    CAS  PubMed  Google Scholar 

  273. Leader M, Patel J, Collins M, Henry K. Alpha-1-antichymotrypsin staining of 194 sarcomas, 38 carcinomas and 17 malignant melanomas. Am J Surg Pathol. 1987;11:133–9.

    CAS  PubMed  Google Scholar 

  274. Weiss LM, Arber DA, Chang KL. CD68: a review. Appl Immunohistochem. 1994;2:2–8.

    CAS  Google Scholar 

  275. McHugh M, Miettinen M. CD68 – its limited specificity for histiocytic tumors. Appl Immunohistochem. 1994;2:186–90.

    Google Scholar 

  276. Fabriek BO, Dijkstra CD, Van Den Berg TK. The macrophage scavenger receptor CD163. Immunobiology. 2005;210:153–60.

    CAS  PubMed  Google Scholar 

  277. Nguyen TT, Schwartz EJ, West RB, Warnke, Warnke RA, Arber DA, Natkunam Y. Expression of CD163 (hemoglobin scavenger receptor) in normal tissues, lymphomas, carcinomas, and sarcomas is largely restricted to the monocyte/macrophage lineage. Am J Surg Pathol. 2005;29:617–24.

    PubMed  Google Scholar 

  278. Nemes Z, Thomázy V. Factor XIIIa and the classic histiocytic markers in malignant fibrous histiocytoma: a comparative immunohistochemical study. Hum Pathol. 1988;19(7):822–9.

    CAS  PubMed  Google Scholar 

  279. Binh MB, Sastre-Garau X, Guillou L, de Pinieux G, Terrier P, Lagacé R, et al. MDM2 and CDK4 immunostainings are useful adjuncts in diagnosing well-differentiated and dedifferentiated liposarcoma subtypes: a comparative analysis of 559 soft tissue neoplasms with genetic data. Am J Surg Pathol. 2005;29:1340–7.

    PubMed  Google Scholar 

  280. Goh YW, Spagnolo DV, Platten M, Caterina P, Fisher C, Oliveira AM, et al. Extraskeletal myxoid chondrosarcoma: a light microscopic, immunohistochemical, ultrastructural, and immunoultrastructural study indicating neuroendocrine differentiation. Histopathology. 2001;39:514–24.

    CAS  PubMed  Google Scholar 

  281. Wehrli BM, Huang W, De Crombrugghe B, Ayala AG, Czerniak B. Sox9, a master regulator of chondrogenesis, distinguishes mesenchymal chondrosarcoma from other small blue round cell tumors. Hum Pathol. 2003;34:263–9.

    CAS  PubMed  Google Scholar 

  282. Fanburg IC, Rosenberg AE, Weaver DL, Leslie KO, Mann KG, Taatjes DJ, et al. Osteocalcin and osteonectin immunoreactivity in the diagnosis of osteosarcoma. Am I Clin Pathol. 1997;108(4):464–73.

    CAS  Google Scholar 

  283. Fanburg-Smith JF, Bratthauer GL, Miettinen M. Osteocalcin and osteonectin immunoreactivity in extraskeletal osteosarcoma: a study of 28 cases. Hum Pathol. 1999;30:32–8.

    CAS  PubMed  Google Scholar 

  284. Stevenson AJ, Chatten J, Bertoni F, Miettinen M. CD99 (p30/32–MIC2) neuroectodermal/Ewing sarcoma antigen as an immunohistochemical marker: Review of more than 600 tumors and the literature experience. Appl Immunohistochem. 1994;2:231–40.

    Google Scholar 

  285. Lucas DR, Nascimento AG, Sim FH. Clear cell sarcoma of soft tissues: Mayo Clinic experience with 35 cases. Am I Surg I’athol. 1992;16:1197–204.

    CAS  Google Scholar 

  286. Rosai J, Dias P, Parham DM, Shapiro DN, Houghton P. MyoD1 protein expression in alveolar soft part sarcoma as confirmatory evidence of its skeletal muscle nature. Am J Surg Pathol. 1991;15:974–81.

    CAS  PubMed  Google Scholar 

  287. Wang NP, Bacchi CE, Jiang JJ, McNutt MA, Gown AM. Does alveolar soft-part sarcoma exhibit skeletal muscle differentiation? An immunocytochemical and biochemical study of myogenic regulatory protein expression. Mod Pathol. 1996;9:496–506.

    CAS  PubMed  Google Scholar 

  288. Lae ME, Roche PC, Jin L, Lloyd RV, Nascimento AG. Desmoplastic small round cell tumor: a clinicopathologic, immunohistochemical, and molecular study of 32 tumors. Am J Surg Pathol. 2002;26(7):823–35.

    PubMed  Google Scholar 

  289. Vogel H. Nervous system. Cambridge: Cambridge University Press; 2009.

    Google Scholar 

  290. Miller DC. Modern surgical neuropathology. Cambridge: Cambridge University Press; 2009.

    Google Scholar 

  291. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. WHO classification of tumours of the central nervous system. 4th ed. Lyon: IARC (International Agency for Research on Cancer); 2007.

    Google Scholar 

  292. McKeever PE. The brain, spinal cord, and meninges. In: Mills SE, Carter D, Greenson JK, et al., editors. Sternsburg’s diagnostic surgical pathology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2010.

    Google Scholar 

  293. Burger PC, Scheithauer BW. Tumors of the central nervous system, vol. Fascicle 7. 4th ed. Washington: American Registry of Pathology; 2007.

    Google Scholar 

  294. McKeever PE. Laboratory methods in brain tumor diagnosis. In: Nelson JS, Mena H, Parisi J, et al., editors. Principles and practice of neuropathology. 2nd ed. New York: Oxford University Press; 2003.

    Google Scholar 

  295. Burger PC, Scheithauer BW. AFIP atlas of tumor pathology: tumors of the central nervous system. 4th ed. Washington DC: American Registry of Pathology & Armed Forces Institute of Pathology; 2007.

    Google Scholar 

  296. McKeever PE. Immunohistology of the nervous system. In: Dabbs D, editor. Diagnostic immunohistochemistry. 3rd ed. Philadelphia: Churchill Livingstone Elsevier; 2010. p. 820–89.

    Google Scholar 

  297. Tena-Suck ML, Moreno-Jiménez S, Alonso M, Aguirre-Crux L, Sánchez A. Oligodendrogliomas in relation to astrocytes differentiation. Clinicopathologic and immunohistochemical study. Ann Diagn Pathol. 2008;12(5):313–21.

    PubMed  Google Scholar 

  298. Wharton SB, Chan KK, Hamilton FA, Anderson JR. Expression of neuronal markers in oligodendrogliomas: an immunohistochemical study. Neuropathol Appl Neurobiol. 1998;24(4):302–8.

    CAS  PubMed  Google Scholar 

  299. Herbert J, Cavallaro T, Dwork AJ. A marker for primary choroid plexus neoplasms. Am J Pathol. 1990;136(6):1317–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  300. Kubo S, Ogino S, Fukushima T, Maruno M, Yoshimine T, Hasegawa H. Immunocytochemical detection of insulin-like growth factor II (IGF-II) in choroid plexus papilloma: a possible marker for differential diagnosis. Clin Neuropathol. 1999;18(2):74–9.

    CAS  PubMed  Google Scholar 

  301. Kubo S, Ogino S, Fukushima T, Olson PR, Kida M, Maruno M, et al. Immunohistochemical study of insulin-like growth factor II (IGF-II) and insulin-like growth factor binding protein-2 (IGFBP-2) in choroid plexus papilloma. Neurol Res. 1999;21(4):339–44.

    CAS  PubMed  Google Scholar 

  302. Vege KD, Giannini C, Scheithauer BW. The immunophenotype of ependymomas. Appl Immunohistochem Mol Morphol. 2000;8(1):25–31.

    CAS  PubMed  Google Scholar 

  303. Hasselblatt M, Paulus W. Sensitivity and specificity of epithelial membrane antigen staining patterns in ependymomas. Acta Neuropathol. 2003;106(4):385–8.

    PubMed  Google Scholar 

  304. Kawano N, Yasui Y, Utsuki S, Oka H, Fujii K, Yamashina S. Light microscopic demonstration of the microlumen of ependymoma: a study of the usefulness of antigen retrieval for epithelial membrane antigen (EMA) immunostaining. Brain Tumor Pathol. 2004;21(1):17–21.

    PubMed  Google Scholar 

  305. Mahfouz S, Aziz AA, Gabal SM, el-Sheikh S. Immunohistochemical study of CD99 and EMA expression in ependymomas. Medscape J Med. 2008;10(2):41.

    PubMed Central  PubMed  Google Scholar 

  306. Miller DC, Koslow M, Budzilovich GN, Burstein DE. Synaptophysin: a sensitive and specific marker for ganglion cells in central nervous system neoplasms. Hum Pathol. 1990;21(1):93–8.

    CAS  PubMed  Google Scholar 

  307. Hirose T, Scheithauer BW, Lopes MB, Gerber HA, Altermatt HJ, VandenBerg SR. Ganglioglioma: an ultrastructural and immunohistochemical study. Cancer. 1997;79(5):989–1003.

    CAS  PubMed  Google Scholar 

  308. Wierzba-Bobrowicz T, Schmidt-Sidor B, Gwiazda E, Bertrand E. The significance of immunocytochemical markers, synaptophysin and neurofilaments in diagnosis of ganglioglioma. Folia Neuropathol. 1999;37(3):157–61.

    CAS  PubMed  Google Scholar 

  309. Mena H, Rushing EJ, Ribas JL, Delahunt B, McCarthy WF. Tumors of pineal parenchymal cells: a correlation of histological features, including nucleolar organizer regions, with survival in 35 cases. Hum Pathol. 1995;26(1):20–30.

    CAS  PubMed  Google Scholar 

  310. Ang LC, Taylor AR, Bergin D, Kaufmann JC. An immunohistochemical study of papillary tumors in the central nervous system. Cancer. 1990;65(12):2712–9.

    CAS  PubMed  Google Scholar 

  311. Sell M, Sampaolo S, Di Lorio G, Theallier A. Chordomas: a histological and immunohistochemical study of cases with and without recurrent tumors. Clin Neuropathol. 2004;23(6):277–85.

    CAS  PubMed  Google Scholar 

  312. Wojno KJ, Hruban RH, Garin-Chesa P, Huvos AG. Chondroid chordomas and low-grade chondrosarcomas of the craniospinal axis. An immunohistochemical analysis of 17 cases. Am J Surg Pathol. 1992;16(12):1144–52.

    CAS  PubMed  Google Scholar 

  313. Hu Y, Gao Y, Zhang X. A clinicopathological and immunohistochemical study of 34 cases of chordoma. Zhonghua Bing Li Xue Za Zhi. 1996;25(3):142–4.

    CAS  PubMed  Google Scholar 

  314. Meis JM, Ordóñez NG, Bruner JM. Meningiomas. An immunohistochemical study of 50 cases. Arch Pathol Lab Med. 1986;110(10):934–7.

    CAS  PubMed  Google Scholar 

  315. Pérez-Guiones Bacete M, Cerda-Nicolás M, Piquer J, Barcia-Mariño C. Meningiomas: immunohistochemical analysis of 26 cases. Arch Neurobiol (Madr). 1992;55(2):43–9.

    Google Scholar 

  316. Jaffee ES, Harris NL, Stein H, editors. World Health Organization classification of tumors: pathology and genetics of tumors of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2001.

    Google Scholar 

  317. Roberts RO, Lynch CF, Jones MP, Hart MN. Medulloblastoma: a population-based study of 532 cases. J Neuropathol Exp Neurol. 1991;50(2):134–44.

    CAS  PubMed  Google Scholar 

  318. Coffin CM, Braun JT, Wick MR, Dehner LP. A clinicopathologic and immunohistochemical analysis of 53 cases of medulloblastoma with emphasis on synaptophysin expression. Mod Pathol. 1990;3(2):164–70.

    CAS  PubMed  Google Scholar 

  319. Hayashi K, Motoi M, Nose S, Horie Y, Akagi T, Ogawa K, et al. An immunohistochemical study on the distribution of glial fibrillary acidic protein, S-100 protein, neuron-specific enolase, and neurofilament in medulloblastomas. Acta Pathol Jpn. 1987;37(1):85–96.

    CAS  PubMed  Google Scholar 

  320. Mobley BC, Roulston D, Shah GV, Bijwaard KE, McKeever PE. Peripheral primitive neuroectodermal tumor/Ewing’s sarcoma of the craniospinal vault: case reports and review. Hum Pathol. 2006;37(7):845–53.

    PubMed  Google Scholar 

  321. Gyure KA, Prayson RA, Estes ML. Extracerebellar primitive neuroectodermal tumors: a clinicopathologic study with bcl-2 and CD99 immunohistochemistry. Ann Diagn Pathol. 1999;3(5):276–80.

    CAS  PubMed  Google Scholar 

  322. Mørk SJ, Rubinstein LJ. Ependymoblastoma. A reappraisal of a rare embryonal tumor. Cancer. 1985;55(7):1536–42.

    PubMed  Google Scholar 

  323. McKeever PE, Strawderman MS, Yamini B, Mikhail AA, Blaivas M. MIB-1 proliferation index predicts survival among patients with grade II astrocytoma. J Neuropathol Exp Neurol. 1998;57(10):931–6.

    CAS  PubMed  Google Scholar 

  324. Hsu DW, Louis DN, Efird JT, Hedley-Whyte ET. Use of MIB-1 (Ki-67) immunoreactivity in differentiating grade II and grade III gliomas. J Neuropathol Exp Neurol. 1997;56(8):857–65.

    CAS  PubMed  Google Scholar 

  325. Coons SW, Johnson PC, Pearl DK. The prognostic significance of Ki-67 labeling indices for oligodendrogliomas. Neurosurgery. 1997;41(4):878–84.

    CAS  PubMed  Google Scholar 

  326. Korshunov A, Golanov A, Timirgaz V. Immunohistochemical markers for prognosis of ependymal neoplasms. J Neurooncol. 2002;58(3):255–70.

    PubMed  Google Scholar 

  327. Vajtai I, Varga Z, Aguzzi A. MIB-1 immunoreactivity reveals different labelling in low-grade and in malignant epithelial neoplasms of the choroid plexus. Histopathology. 1996;29(2):147–51.

    CAS  PubMed  Google Scholar 

  328. Ozen O, Demirhan B, Altinörs N. Correlation between histological grade and MIB-1 and p53 immunoreactivity in meningiomas. Clin Neuropathol. 2005;24(5):219–24.

    CAS  PubMed  Google Scholar 

  329. Abramovich CM, Prayson RA. MIB-1 labeling indices in benign, aggressive, and malignant meningiomas: a study of 90 tumors. Hum Pathol. 1998;29(12):1420–7.

    CAS  PubMed  Google Scholar 

  330. Lanzafame S, Torrisi A, Barbagallo G, Emmanuele C, Alberio N, Albanese V. Correlation between histological grade, MIB-1, p53, and recurrence in 69 completely resected primary intracranial meningiomas with a 6 year mean follow-up. Pathol Res Pract. 2000;196(7):483–8.

    CAS  PubMed  Google Scholar 

  331. Coffin CM, Comstock JM, Wallentine JC. Immunohistology of pediatric neoplasms. In: Dabbs DJ, editor. Diagnostic immunohistochemistry. 3rd ed. Philadelphia: Churchill Livingstone Elsevier; 2010. p. 662–89.

    Google Scholar 

  332. Schmidt D, Harms D, Pilon VA. Small-cell pediatric tumors: histology, immunohistochemistry, and electron microscopy. Clin Lab Med. 1987;7(1):63–89.

    CAS  PubMed  Google Scholar 

  333. Triche TJ, Askin FB. Neuroblastoma and the differential diagnosis of small-, round-, blue-cell tumors. Hum Pathol. 1983;14(7):569–95.

    CAS  PubMed  Google Scholar 

  334. Parham DM. Neuroectodermal and neuroendocrine tumors principally seen in children. Am J Clin Pathol. 2001;115(Suppl):S113–28.

    PubMed  Google Scholar 

  335. Munchar MJ, Sharifah NA, Jamal R, Looi LM. CD44s expression correlated with the International Neuroblastoma Pathology Classification (Shimada system) for neuroblastic tumours. Pathology. 2003;35(2):125–9.

    CAS  PubMed  Google Scholar 

  336. Krams M, Parwaresch R, Sipos B, Heidorn K, Harms D, Rudolph P. Expression of the c-kit receptor characterizes a subset of neuroblastomas with favorable prognosis. Oncogene. 2004;23(2):588–95.

    CAS  PubMed  Google Scholar 

  337. Newton Jr WA, Gehan EA, Webber BL, Marsden HB, van Unnik AJ, Hamoudi AB, et al. Classification of rhabdomyosarcomas and related sarcomas. Pathologic aspects and proposal for a new classification–an Intergroup Rhabdomyosarcoma Study. Cancer. 1995;76(6):1073–85.

    PubMed  Google Scholar 

  338. Tsokos M. The diagnosis and classification of childhood rhabdomyosarcoma. Semin Diagn Pathol. 1994;11(1):26–38.

    CAS  PubMed  Google Scholar 

  339. Qualman SJ, Bowen J, Parham DM, Branton PA, Meyer WH, Members of the Cancer Committee, College of American Pathologists. Protocol for the examination of specimens from patients (children and young adults) with rhabdomyosarcoma. Arch Pathol Lab Med. 2003;127:1290–7.

    PubMed  Google Scholar 

  340. Morotti RA, Nicol KK, Parham DM, Teot LA, Moore J, Hayes J, et al. An immunohistochemical algorithm to facilitate diagnosis and subtyping of rhabdomyosarcoma: the Children’s Oncology Group experience. Am J Surg Pathol. 2006;30(8):962–8.

    PubMed  Google Scholar 

  341. Llombart-Bosch A, Machado I, Navarro S, Bertoni F, Bacchini P, Alberghini M, et al. Histological heterogeneity of Ewing’s sarcoma/PNET: an immunohistochemical analysis of 415 genetically confirmed cases with clinical support. Virchows Arch. 2009;455(5):397–411.

    CAS  PubMed  Google Scholar 

  342. Qualman SJ, Bowen J, Amin MB, Srigley JR, Grundy PE, Perlman EJ, et al. Protocol for the examination of specimens from patients with Wilms tumor (nephroblastoma) or other renal tumors of childhood. Arch Pathol Lab Med. 2003;127:1280–9.

    PubMed  Google Scholar 

  343. Muir TE, Cheville JC, Lager DJ. Metanephric adenoma, nephrogenic rests, and Wilms’ tumor: a histologic and immunophenotypic comparison. Am J Surg Pathol. 2001;25(10):1290–6.

    CAS  PubMed  Google Scholar 

  344. Hasegawa T, Hirose T, Seki K, Hizawa K, Ishii S, Wakabayashi J. Histological and immunohistochemical diversities, and proliferative activity and grading in osteosarcomas. Cancer Detect Prev. 1997;21(3):280–7.

    CAS  PubMed  Google Scholar 

  345. Devaney K, Vinh TN, Sweet DE. Small cell osteosarcoma of bone: an immunohistochemical study with differential diagnostic considerations. Hum Pathol. 1993;24(11):1211–25.

    CAS  PubMed  Google Scholar 

  346. Schofield D. Extrarenal rhabdoid tumour. In: Fletcher CDM, Unni KK, Mertens F, editors. Pathology and genetics of tumours of soft tissue and bone. World Health Organization classification of tumours. Lyon: IARC Press; 2002. p. 219–20.

    Google Scholar 

  347. Kodet R, Newton Jr WA, Sachs N, Hamoudi AB, Raney RB, Asmar L, et al. Rhabdoid tumors of soft tissues: a clinicopathologic study of 26 cases enrolled on the Intergroup Rhabdomyosarcoma Study. Hum Pathol. 1991;22:674–84.

    CAS  PubMed  Google Scholar 

  348. Fisher C. Immunohistochemistry in diagnosis of soft tissue tumours. Histopathology. 2011;58(7):1001–12.

    PubMed  Google Scholar 

  349. Parham DM. Immunohistochemistry of childhood sarcomas: old and new markers. Mod Pathol. 1993;6:133–8.

    CAS  PubMed  Google Scholar 

  350. Tsuneyoshi M, Daimaru Y, Hashimoto H, Enjoji M. Malignant soft tissue neoplasms with the histologic features of renal rhabdoid tumors: an ultrastructural and immunohistochemical study. Hum Pathol. 1985;16:1235–42.

    CAS  PubMed  Google Scholar 

  351. Tsokos M, Kouraklis G, Chandra RS, Bhagavan BS, Triche TJ. Malignant rhabdoid tumor of the kidney and soft tissues. Evidence for a diverse morphological and immunocytochemical phenotype. Arch Pathol Lab Med. 1989;113:115–20.

    CAS  PubMed  Google Scholar 

  352. Barnoud R, Sabourin JC, Pasquier D, Ranchère D, Bailly C, Terrier-Lacombe MJ, et al. Immunohistochemical expression of WT1 by desmoplastic small round cell tumor: a comparative study with other small round cell tumors. Am J Surg Pathol. 2000;24(6):830–6.

    CAS  PubMed  Google Scholar 

  353. Hill DA, Pfeifer JD, Marley EF, Dehner LP, Humphrey PA, Zhu X, et al. WT1 staining reliably differentiates desmoplastic small round cell tumor from Ewing sarcoma/primitive neuroectodermal tumor. An immunohistochemical and molecular diagnostic study. Am J Clin Pathol. 2000;114(3):345–53.

    CAS  PubMed  Google Scholar 

  354. Kodet R. Rhabdomyosarcoma in childhood. An immunohistological analysis with myoglobin, desmin and vimentin. Pathol Res Pract. 1989;185:207–13.

    CAS  PubMed  Google Scholar 

  355. Dias P, Parham DM, Shapiro DN, Webber BL, Houghton PJ. Myogenic regulatory protein (MyoD1) expression in childhood solid tumors: diagnostic utility in rhabdomyosarcoma. Am J Pathol. 1990;137(6):1283–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  356. Dias P, Chen B, Dilday B, Palmer H, Hosoi H, Singh S, et al. Strong immunostaining for myogenin in rhabdomyosarcoma is significantly associated with tumors of the alveolar subclass. Am J Pathol. 2000;156:399–408.

    CAS  PubMed Central  PubMed  Google Scholar 

  357. Riedlinger WF, Kozakewich HP, Vargas SO. Myogenic markers in the evaluation of embryonal botryoid rhabdomyosarcoma of the female genital tract. Pediatr Dev Pathol. 2005;8(4):427–34.

    CAS  PubMed  Google Scholar 

  358. Parham DM, Webber B, Holt H, Williams WK, Maurer H. Immunohistochemical study of childhood rhabdomyosarcomas and related neoplasms. Results of an intergroup Rhabdomyosarcoma study project. Cancer. 1991;67:3072–80.

    CAS  PubMed  Google Scholar 

  359. Carpentieri DF, Nichols K, Chou PM, Matthews M, Pawel B, Huff D. The expression of WT1 in the differentiation of rhabdomyosarcoma from other pediatric small round blue cell tumors. Mod Pathol. 2002;15(10):1080–6.

    CAS  PubMed  Google Scholar 

  360. Chano T, Matsumoto K, Ishizawa M, Morimoto S, Hukuda S, Okabe H, et al. Analysis of the presence of osteocalcin, S-100 protein, and proliferating cell nuclear antigen in cells of various types of osteosarcomas. Eur J Histochem. 1996;40(3):189–98.

    CAS  PubMed  Google Scholar 

  361. Perlman EJ, Dickman PS, Askin FB, Grier HE, Miser JS, Link MP. Ewing’s sarcoma–routine diagnostic utilization of MIC2 analysis: a Pediatric Oncology Group/Children’s Cancer Group Intergroup Study. Hum Pathol. 1994;25(3):304–7.

    CAS  PubMed  Google Scholar 

  362. Fellinger EJ, Garin-Chesa P, Triche TJ, Huvos AG, Rettig WJ. Immunohistochemical analysis of Ewing’s sarcoma cell surface antigen p30/32MIC2. Am J Pathol. 1991;139(2):317–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  363. Finn OJ. Cancer immunology. N Engl J Med. 2008;358:2704–15.

    CAS  PubMed  Google Scholar 

  364. Thomas L. On immunosurveillance in human cancer. Yale J Biol Med. 1982;55:329–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  365. Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res. 1970;13:1–27.

    CAS  PubMed  Google Scholar 

  366. Ungefroren H, Sebens S, Seidl D, Lehnert H, Hass R. Interaction of tumor cells with the microenvironment. Cell Commun Sig. 2011;9:18.

    CAS  Google Scholar 

  367. Allen M, Louise JJ. Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J Pathol. 2011;223:162–76.

    CAS  PubMed  Google Scholar 

  368. Fridman WH, Mlecnik B, Bindea G, Pages F, Galon J. Immunosurveillance in human non-viral cancers. Curr Opin Immunol. 2011;23:272–8.

    CAS  PubMed  Google Scholar 

  369. Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ, et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature. 2007;450:903–7.

    CAS  PubMed  Google Scholar 

  370. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.

    CAS  PubMed  Google Scholar 

  371. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. IFN gamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410:1107–11.

    CAS  PubMed  Google Scholar 

  372. Smyth MJ, Dunn GP, Schreiber RD. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol. 2006;90:1–50.

    CAS  PubMed  Google Scholar 

  373. Galon J, Fridman WH, Pages F. The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res. 2007;67:1883–6.

    CAS  PubMed  Google Scholar 

  374. Asciertoet ML, De Giorgi V, Liu Q, Bedognetti D, Spivey TL, Murtas D, et al. An immunologic portrait of cancer. J Transl Med. 2011;9:146.

    Google Scholar 

  375. Wang E, Worschech A, Marincola FM. The immunologic constant of rejection. Trends Immunol. 2008;29:256–62.

    PubMed  Google Scholar 

  376. Immunologic signatures of rejection. Marincola M, Wang E. ed. New York: Springer; 2010.

    Google Scholar 

  377. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–4.

    CAS  PubMed  Google Scholar 

  378. Bindea G, Mlecnik B, Fridman WH, Pages F, Galon J. Natural immunity to cancer in humans. Curr Opin Immunol. 2010;22:215–22.

    CAS  PubMed  Google Scholar 

  379. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12:298–306.

    CAS  PubMed  Google Scholar 

  380. Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene. 2010;29:1093–102.

    CAS  PubMed  Google Scholar 

  381. Angell HK, Galon J. From the immune contexture to the immunoscore: the role of prognostic and predictive immune markers in cancer. Curr Opin Immunol. 2013;25:261–7.

    CAS  PubMed  Google Scholar 

  382. Broussard EK, Disis ML. TNM staging in colorectal cancer: T is for T cell and M is for memory. J Clin Oncol. 2011;29:601–3.

    PubMed  Google Scholar 

  383. Galon J, Pages F, Marincola FM, Thurin M, Trinchieri G, Fox BA, et al. The immune score as a new possible approach for the classification of cancer. J Transl Med. 2012;10:1.

    PubMed Central  PubMed  Google Scholar 

  384. Galon J, Franck P, Marincola FM, Angell HK, Thurin M, Lugli A, et al. Cancer classification using the immunoscore: a worldwide task force. J Transl Med. 2012;10:205.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Ghanadan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ghanadan, A., Jahanzad, I., Abbasi, A. (2015). Immunohistochemistry of Cancers. In: Rezaei, N. (eds) Cancer Immunology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44006-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44006-3_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44005-6

  • Online ISBN: 978-3-662-44006-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics