Skip to main content

MHC Class I Molecules and Cancer Progression: Lessons Learned from Preclinical Mouse Models

  • Chapter
  • First Online:
Cancer Immunology

Abstract

Major histocompatibility complex (MHC) class I molecules are expressed on the surface of nucleated cells and present peptides derived from endogenous proteins to CD8+ T lymphocytes. In tumor cells, MHC-I molecules may present peptides derived from tumor-associated antigens, which are new proteins expressed or overexpressed in tumor cells. Presentation of these new peptides may allow recognition and destruction of tumor cells by CD8+ T lymphocytes. Loss of MHC-I expression on tumor cells is a widespread and frequent mechanism developed to escape from immunosurveillance. Alteration in MHC-I in both human and murine experimental tumors has been widely reported. This chapter summarizes the role of MHC class I expression on cancer cells in tumor and metastatic progression, as well as its effect on the outcome of immunotherapy in murine experimental tumors. Results were obtained from different tumor clones derived from a fibrosarcoma induced by methylcholanthrene in BALB/c mice, in addition to spontaneous metastases derived from these tumor clones, during more than 30 years of study on murine cancer model GR9. In this tumor model, results show an inverse correlation between MHC-I expression on tumor cells and primary tumor growth, i.e., MHC-I-negative tumors grew more rapidly compared to MHC-I-positive tumors. In contrast, a direct correlation was found between MHC-I expression on primary tumors and spontaneous metastatic capacity. Immunotherapy as an antimetastatic treatment was completely effective against MHC-I highly positive tumors and was partially effective on tumors with intermediate level of MHC-I expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gorer PA. The significance of studies with transplanted tumours. Br J Cancer. 1948;2(2):103–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Dausset J. The agglutination mechanism of trypsin modified red cells. Blood. 1952;7(8):816–25.

    CAS  PubMed  Google Scholar 

  3. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC. Structure of the human class I histocompatibility antigen, HLA-A2. Nature. 1987;329(6139):506–12.

    CAS  PubMed  Google Scholar 

  4. Bjorkman PJ, Parham P. Structure, function, and diversity of class I major histocompatibility complex molecules. Annu Rev Biochem. 1990;59:253–88.

    CAS  PubMed  Google Scholar 

  5. Le Bouteiller P. HLA class I chromosomal region, genes, and products: facts and questions. Crit Rev Immunol. 1994;14(2):89–129.

    PubMed  Google Scholar 

  6. Parham P, Ohta T. Population biology of antigen presentation by MHC class I molecules. Science. 1996;272(5258):67–74.

    CAS  PubMed  Google Scholar 

  7. Grandea 3rd AG, Van Kaer L. Tapasin: an ER chaperone that controls MHC class I assembly with peptide. Trends Immunol. 2001;22(4):194–9.

    CAS  PubMed  Google Scholar 

  8. Maffei A, Papadopoulos K, Harris PE. MHC class I antigen processing pathways. Hum Immunol. 1997;54(2):91–103.

    CAS  PubMed  Google Scholar 

  9. van Endert PM. Genes regulating MHC class I processing of antigen. Curr Opin Immunol. 1999;11(1):82–8.

    PubMed  Google Scholar 

  10. Koopmann JO, Hammerling GJ, Momburg F. Generation, intracellular transport and loading of peptides associated with MHC class I molecules. Curr Opin Immunol. 1997;9(1):80–8.

    CAS  PubMed  Google Scholar 

  11. Pamer E, Cresswell P. Mechanisms of MHC class I–restricted antigen processing. Annu Rev Immunol. 1998;16:323–58.

    CAS  PubMed  Google Scholar 

  12. Ljunggren HG, Karre K. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today. 1990;11(7):237–44.

    CAS  PubMed  Google Scholar 

  13. Algarra I, Gaforio JJ, Garrido A, Mialdea MJ, Perez M, Garrido F. Heterogeneity of MHC-class-I antigens in clones of methylcholanthrene-induced tumors. Implications for local growth and metastasis. Int J Cancer Suppl. 1991;6:73–81.

    CAS  PubMed  Google Scholar 

  14. Garrido F, Cabrera T, Concha A, Glew S, Ruiz-Cabello F, Stern PL. Natural history of HLA expression during tumour development. Immunol Today. 1993;14(10):491–9.

    CAS  PubMed  Google Scholar 

  15. Garrido F, Ruiz-Cabello F, Cabrera T, Perez-Villar JJ, Lopez-Botet M, Duggan-Keen M, et al. Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today. 1997;18(2):89–95.

    CAS  PubMed  Google Scholar 

  16. Johnsen AK, Templeton DJ, Sy M, Harding CV. Deficiency of transporter for antigen presentation (TAP) in tumor cells allows evasion of immune surveillance and increases tumorigenesis. J Immunol. 1999;163(8):4224–31.

    CAS  PubMed  Google Scholar 

  17. Seliger B. Molecular mechanisms of MHC class I abnormalities and APM components in human tumors. Cancer Immunol Immunother. 2008;57(11):1719–26.

    CAS  PubMed  Google Scholar 

  18. Garrido C, Algarra I, Maleno I, Stefanski J, Collado A, Garrido F, et al. Alterations of HLA class I expression in human melanoma xenografts in immunodeficient mice occur frequently and are associated with higher tumorigenicity. Cancer Immunol Immunother. 2010;59(1):13–26.

    CAS  PubMed  Google Scholar 

  19. Cabrera T, Maleno I, Lopez-Nevot MA, Redondo M, Fernandez MA, Collado A, et al. High frequency of HLA-B44 allelic losses in human solid tumors. Hum Immunol. 2003;64(10):941–50.

    CAS  PubMed  Google Scholar 

  20. Garrido F, Algarra I. MHC antigens and tumor escape from immune surveillance. Adv Cancer Res. 2001;83:117–58.

    CAS  PubMed  Google Scholar 

  21. Garcia-Lora A, Algarra I, Garrido F. MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol. 2003;195(3):346–55.

    CAS  PubMed  Google Scholar 

  22. Garrido F, Cabrera T, Aptsiauri N. “Hard” and “soft” lesions underlying the HLA class I alterations in cancer cells: implications for immunotherapy. Int J Cancer. 2010;127(2):249–56.

    CAS  PubMed  Google Scholar 

  23. Garrido F, Algarra I, Garcia-Lora AM. The escape of cancer from T lymphocytes: immunoselection of MHC class I loss variants harboring structural-irreversible “hard” lesions. Cancer Immunol Immunother. 2010;59(10):1601–6.

    CAS  PubMed  Google Scholar 

  24. Napolitano LA, Vogel J, Jay G. The role of major histocompatibility complex class I antigens in tumorigenesis: future applications in cancer therapy. Biochim Biophys Acta. 1989;989(2):153–62.

    CAS  PubMed  Google Scholar 

  25. Garrido F, Festenstein H, Schirrmacher V. Further evidence for depression of H-2 and Ia-like specificities of foreign haplotypes in mouse tumour cell lines. Nature. 1976;261(5562):705–7.

    CAS  PubMed  Google Scholar 

  26. Pellegrino MA, Ferrone S, Reisfeld RA, Irie RF, Golub SH. Expression of histocompatibility (HLA) antigens on tumor cells and normal cells from patients with melanoma. Cancer. 1977;40(1):36–41.

    CAS  PubMed  Google Scholar 

  27. Koopman LA, Corver WE, van der Slik AR, Giphart MJ, Fleuren GJ. Multiple genetic alterations cause frequent and heterogeneous human histocompatibility leukocyte antigen class I loss in cervical cancer. J Exp Med. 2000;191(6):961–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Garcia-Lora A, Martinez M, Algarra I, Gaforio JJ, Garrido F. MHC class I-deficient metastatic tumor variants immunoselected by T lymphocytes originate from the coordinated downregulation of APM components. Int J Cancer. 2003;106(4):521–7.

    CAS  PubMed  Google Scholar 

  29. Garrido C, Romero I, Berruguilla E, Cancela B, Algarra I, Collado A, et al. Immunotherapy eradicates metastases with reversible defects in MHC class I expression. Cancer Immunol Immunother. 2011;60(9):1257–68.

    CAS  PubMed  Google Scholar 

  30. Garrido F, Perez M, Torres MD. Absence of four H-2d antigenic specificities in an H-2d sarcoma. J Immunogenet. 1979;6(2):83–6.

    CAS  PubMed  Google Scholar 

  31. Festenstein H, Schmidt W, Testorelli C, Marelli O, Simpson S. Biologic effects of the altered MHS profile on the K36 tumor, a spontaneous leukemia of AKR. Transplant Proc. 1980;12(1):25–8.

    CAS  PubMed  Google Scholar 

  32. Ballinari D, Pierotti MA, Sensi ML, Parmiani G. Lack of H-2Ld locus products on a BALB/c fibrosarcoma expressing H-2k-like alien antigens. J Immunogenet. 1983;10(2):115–25.

    CAS  PubMed  Google Scholar 

  33. Rosloniec EF, Kuhn MH, Genyea CA, Reed AH, Jennings JJ, Giraldo AA, et al. Aggressiveness of SJL/J lymphomas correlates with absence of H-2Ds antigens. J Immunol. 1984;132(2):945–52.

    CAS  PubMed  Google Scholar 

  34. Hui KM, Sim T, Foo TT, Oei AA. Tumor rejection mediated by transfection with allogeneic class I histocompatibility gene. J Immunol. 1989;143(11):3835–43.

    CAS  PubMed  Google Scholar 

  35. Hui K, Grosveld F, Festenstein H. Rejection of transplantable AKR leukaemia cells following MHC DNA-mediated cell transformation. Nature. 1984;311(5988):750–2.

    CAS  PubMed  Google Scholar 

  36. Wallich R, Bulbuc N, Hammerling GJ, Katzav S, Segal S, Feldman M. Abrogation of metastatic properties of tumour cells by de novo expression of H-2K antigens following H-2 gene transfection. Nature. 1985;315(6017):301–5.

    CAS  PubMed  Google Scholar 

  37. Tanaka K, Gorelik E, Watanabe M, Hozumi N, Jay G. Rejection of B16 melanoma induced by expression of a transfected major histocompatibility complex class I gene. Mol Cell Biol. 1988;8(4):1857–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Sturmhofel K, Hammerling GJ. Reconstitution of H-2 class I expression by gene transfection decreases susceptibility to natural killer cells of an EL4 class I loss variant. Eur J Immunol. 1990;20(1):171–7.

    CAS  PubMed  Google Scholar 

  39. Schmidt W, Henseling U, Bevec D, Alonzo AD, Festenstein H. Control of synthesis and expression of H-2 heavy chain and beta-2 microglobulin in AKR leukemias. Immunogenetics. 1985;22(5):483–94.

    CAS  PubMed  Google Scholar 

  40. Beck JC, Hansen TH, Cullen SE, Lee DR. Slower processing, weaker beta 2-M association, and lower surface expression of H-2Ld are influenced by its amino terminus. J Immunol. 1986;137(3):916–23.

    CAS  PubMed  Google Scholar 

  41. Keeney JB, Hansen TH. Cis-acting elements determine the locus-specific shutoff of class I major histocompatibility genes in murine S49 lymphoma sublines. Proc Natl Acad Sci U S A. 1989;86(16):6288–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Green WR, Rich RF, Beadling C. Differential induction of H-2K versus H-2D class I major histocompatibility antigens by recombinant gamma interferon. Lack of Kk augmentation in a leukemia virus-induced tumor is due to a cis-dominant effect. J Exp Med. 1988;167(5):1616–24.

    CAS  PubMed  Google Scholar 

  43. Cerosaletti KM, Woodward JG, Lord EM, Frelinger JG. Two regions of the H-2 Dd promoter are responsive to dimethylsulfoxide in line 1 cells by a mechanism distinct from IFN-gamma. J Immunol. 1992;148(4):1212–21.

    CAS  PubMed  Google Scholar 

  44. Rubocki RJ, Connolly JM, Hansen TH, Melvold RW, Kim BS, Hildebrand WH, et al. Mutation at amino acid position 133 of H-2Dd prevents beta 2m association and immune recognition but not surface expression. J Immunol. 1991;146(7):2352–7.

    CAS  PubMed  Google Scholar 

  45. Seliger B, Wollscheid U, Momburg F, Blankenstein T, Huber C. Coordinate downregulation of multiple MHC class I antigen processing genes in chemical-induced murine tumor cell lines of distinct origin. Tissue Antigens. 2000;56(4):327–36.

    CAS  PubMed  Google Scholar 

  46. Seliger B, Wollscheid U, Momburg F, Blankenstein T, Huber C. Characterization of the major histocompatibility complex class I deficiencies in B16 melanoma cells. Cancer Res. 2001;61(3):1095–9.

    CAS  PubMed  Google Scholar 

  47. Lou Y, Vitalis TZ, Basha G, Cai B, Chen SS, Choi KB, et al. Restoration of the expression of transporters associated with antigen processing in lung carcinoma increases tumor-specific immune responses and survival. Cancer Res. 2005;65(17):7926–33.

    CAS  PubMed  Google Scholar 

  48. Ljunggren HG, Karre K. Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J Exp Med. 1985;162(6):1745–59.

    CAS  PubMed  Google Scholar 

  49. Franksson L, George E, Powis S, Butcher G, Howard J, Karre K. Tumorigenicity conferred to lymphoma mutant by major histocompatibility complex-encoded transporter gene. J Exp Med. 1993;177(1):201–5.

    CAS  PubMed  Google Scholar 

  50. Karre K. Express yourself or die: peptides, MHC molecules, and NK cells. Science. 1995;267(5200):978–9.

    CAS  PubMed  Google Scholar 

  51. Piontek GE, Taniguchi K, Ljunggren HG, Gronberg A, Kiessling R, Klein G, et al. YAC-1 MHC class I variants reveal an association between decreased NK sensitivity and increased H-2 expression after interferon treatment or in vivo passage. J Immunol. 1985;135(6):4281–8.

    CAS  PubMed  Google Scholar 

  52. Reinis M, Stepanek I, Simova J, Bieblova J, Pribylova H, Indrova M, et al. Induction of protective immunity against MHC class I-deficient, HPV16-associated tumours with peptide and dendritic cell-based vaccines. Int J Oncol. 2010;36(3):545–51.

    CAS  PubMed  Google Scholar 

  53. Reinis M, Simova J, Indrova M, Bieblova J, Pribylova H, Moravcova S, et al. Immunization with MHC class I-negative but not -positive HPV16-associated tumour cells inhibits growth of MHC class I-negative tumours. Int J Oncol. 2007;30(4):1011–7.

    CAS  PubMed  Google Scholar 

  54. van Hall T, Wolpert EZ, van Veelen P, Laban S, van der Veer M, Roseboom M, et al. Selective cytotoxic T-lymphocyte targeting of tumor immune escape variants. Nat Med. 2006;12(4):417–24.

    PubMed  Google Scholar 

  55. Fruci D, Benevolo M, Cifaldi L, Lorenzi S, Lo Monaco E, Tremante E, et al. Major histocompatibility complex class i and tumour immuno-evasion: how to fool T cells and natural killer cells at one time. Curr Oncol. 2012;19(1):39–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Garrido A, Perez M, Delgado C, Garrido ML, Rojano J, Algarra I, et al. Influence of class I H-2 gene expression on local tumor growth. Description of a model obtained from clones derived from a solid BALB/c tumor. Exp Clin Immunogenet. 1986;3(2):98–110.

    CAS  PubMed  Google Scholar 

  57. Perez M, Algarra I, Ljunggren HG, Caballero A, Mialdea MJ, Gaforio JJ, et al. A weakly tumorigenic phenotype with high MHC class-I expression is associated with high metastatic potential after surgical removal of the primary murine fibrosarcoma. Int J Cancer. 1990;46(2):258–61.

    CAS  PubMed  Google Scholar 

  58. Romero I, Martinez M, Garrido C, Collado A, Algarra I, Garrido F, et al. The tumour suppressor Fhit positively regulates MHC class I expression on cancer cells. J Pathol. 2012;227(3):367–79.

    CAS  PubMed  Google Scholar 

  59. Romero I. Heterogeneidad intratumoral en la expresión de moléculas MHC en el tumor murino GR9: mecanismos moleculares implicados y comportamiento biológico in vivo. Doctoral thesis. Universidad de Granada. 2012.

    Google Scholar 

  60. Aptsiauri N, Carretero R, Garcia-Lora A, Real LM, Cabrera T, Garrido F. Regressing and progressing metastatic lesions: resistance to immunotherapy is predetermined by irreversible HLA class I antigen alterations. Cancer Immunol Immunother. 2008;57(11):1727–33.

    CAS  PubMed  Google Scholar 

  61. Garrido ML, Perez M, Delgado C, Rojano J, Algarra I, Garrido A, et al. Immunogenicity of H-2 positive and H-2 negative clones of a mouse tumour, GR9. J Immunogenet. 1986;13(2–3):159–67.

    CAS  PubMed  Google Scholar 

  62. Sahai E. Illuminating the metastatic process. Nat Rev Cancer. 2007;7(10):737–49.

    CAS  PubMed  Google Scholar 

  63. Talmadge JE. Models of metastasis in drug discovery. Methods Mol Biol. 2010;602:215–33.

    CAS  PubMed  Google Scholar 

  64. Talmadge JE, Fidler IJ. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 2010;70(14):5649–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Fidler IJ. Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst. 1970;45(4):773–82.

    CAS  PubMed  Google Scholar 

  66. Weiss L. Metastatic inefficiency. Adv Cancer Res. 1990;54:159–211.

    CAS  PubMed  Google Scholar 

  67. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Guise T. Examining the metastatic niche: targeting the microenvironment. Semin Oncol. 2010;37 Suppl 2:S2–14.

    CAS  PubMed  Google Scholar 

  69. Ghajar CM, Bissell MJ. Extracellular matrix control of mammary gland morphogenesis and tumorigenesis: insights from imaging. Histochem Cell Biol. 2008;130(6):1105–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Menon MB, Ronkina N, Schwermann J, Kotlyarov A, Gaestel M. Fluorescence-based quantitative scratch wound healing assay demonstrating the role of MAPKAPK-2/3 in fibroblast migration. Cell Motil Cytoskeleton. 2009;66(12):1041–7.

    CAS  PubMed  Google Scholar 

  71. Bos PD, Nguyen DX, Massague J. Modeling metastasis in the mouse. Curr Opin Pharmacol. 2010;10(5):571–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Francia G, Cruz-Munoz W, Man S, Xu P, Kerbel RS. Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer. 2011;11(2):135–41.

    CAS  PubMed  Google Scholar 

  73. Jonkers J, Berns A. Conditional mouse models of sporadic cancer. Nat Rev Cancer. 2002;2(4):251–65.

    CAS  PubMed  Google Scholar 

  74. Van Dyke T, Jacks T. Cancer modeling in the modern era: progress and challenges. Cell. 2002;108(2):135–44.

    PubMed  Google Scholar 

  75. Podsypanina K, Politi K, Beverly LJ, Varmus HE. Oncogene cooperation in tumor maintenance and tumor recurrence in mouse mammary tumors induced by Myc and mutant Kras. Proc Natl Acad Sci U S A. 2008;105(13):5242–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Poste G, Doll J, Hart IR, Fidler IJ. In vitro selection of murine B16 melanoma variants with enhanced tissue-invasive properties. Cancer Res. 1980;40(5):1636–44.

    CAS  PubMed  Google Scholar 

  77. Morikawa K, Walker SM, Nakajima M, Pathak S, Jessup JM, Fidler IJ. Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cells in nude mice. Cancer Res. 1988;48(23):6863–71.

    CAS  PubMed  Google Scholar 

  78. Kubota T. Metastatic models of human cancer xenografted in the nude mouse: the importance of orthotopic transplantation. J Cell Biochem. 1994;56(1):4–8.

    CAS  PubMed  Google Scholar 

  79. Kiguchi K, Iwamori M, Mochizuki Y, Kishikawa T, Tsukazaki K, Saga M, et al. Selection of human ovarian carcinoma cells with high dissemination potential by repeated passage of the cells in vivo into nude mice, and involvement of Le(x)-determinant in the dissemination potential. Jpn J Cancer Res. 1998;89(9):923–32.

    CAS  PubMed  Google Scholar 

  80. Fidler IJ, Kripke ML. Metastasis results from preexisting variant cells within a malignant tumor. Science. 1977;197(4306):893–5.

    CAS  PubMed  Google Scholar 

  81. Dexter DL, Kowalski HM, Blazar BA, Fligiel Z, Vogel R, Heppner GH. Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Res. 1978;38(10):3174–81.

    CAS  PubMed  Google Scholar 

  82. Wang N, Yu SH, Liener IE, Hebbel RP, Eaton JW, McKhann CF. Characterization of high- and low-metastatic clones derived from a methylcholanthrene-induced murine fibrosarcoma. Cancer Res. 1982;42(3):1046–51.

    CAS  PubMed  Google Scholar 

  83. Fidler IJ. Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res. 1978;38(9):2651–60.

    CAS  PubMed  Google Scholar 

  84. Nicolson GL, Brunson KW, Fidler IJ. Specificity of arrest, survival, and growth of selected metastatic variant cell lines. Cancer Res. 1978;38(11 Pt 2):4105–11.

    CAS  PubMed  Google Scholar 

  85. Haywood GR, McKhann CF. Antigenic specificities on murine sarcoma cells. Reciprocal relationship between normal transplantation antigens (H-2) and tumor-specific immunogenicity. J Exp Med. 1971;133(6):1171–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. VandenDriessche T, Geldhof A, Bakkus M, Toussaint-Demylle D, Brijs L, Thielemans K, et al. Metastasis of mouse T lymphoma cells is controlled by the level of major histocompatibility complex class I H-2Dk antigens. Int J Cancer. 1994;58(2):217–25.

    CAS  PubMed  Google Scholar 

  87. VandenDriessche T, Bakkus M, Toussaint-Demylle D, Thielemans K, Verschueren H, De Baetselier P. Tumorigenicity of mouse T lymphoma cells is controlled by the level of major histocompatibility complex class I H-2Kk antigens. Clin Exp Metastasis. 1994;12(1):73–83.

    CAS  PubMed  Google Scholar 

  88. Eisenbach L, Segal S, Feldman M. MHC imbalance and metastatic spread in Lewis lung carcinoma clones. Int J Cancer. 1983;32(1):113–20.

    CAS  PubMed  Google Scholar 

  89. Eisenbach L, Hollander N, Greenfeld L, Yakor H, Segal S, Feldman M. The differential expression of H-2K versus H-2D antigens, distinguishing high-metastatic from low-metastatic clones, is correlated with the immunogenic properties of the tumor cells. Int J Cancer. 1984;34(4):567–73.

    CAS  PubMed  Google Scholar 

  90. Feldman M, Eisenbach L. MHC class I genes controlling the metastatic phenotype of tumor cells. Semin Cancer Biol. 1991;2(5):337–46.

    CAS  PubMed  Google Scholar 

  91. Plaksin D, Gelber C, Feldman M, Eisenbach L. Reversal of the metastatic phenotype in Lewis lung carcinoma cells after transfection with syngeneic H-2Kb gene. Proc Natl Acad Sci U S A. 1988;85(12):4463–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. De Giovanni C, Nicoletti G, Sensi M, Santoni A, Palmieri G, Landuzzi L, et al. H-2Kb and H-2Db gene transfections in B16 melanoma differently affect non-immunological properties relevant to the metastatic process. Involvement of integrin molecules. Int J Cancer. 1994;59(2):269–74.

    PubMed  Google Scholar 

  93. Katzav S, De Baetselier P, Tartakovsky B, Feldman M, Segal S. Alterations in major histocompatibility complex phenotypes of mouse cloned T10 sarcoma cells: association with shifts from nonmetastatic to metastatic cells. J Natl Cancer Inst. 1983;71(2):317–24.

    CAS  PubMed  Google Scholar 

  94. Katzav S, De Baetselier P, Gorelik E, Feldman M, Segal S. Immunogenetic control of metastasis formation by a methylcholanthrene-induced tumor (T10) in mice: differential expression of H-2 gene products. Transplant Proc. 1981;13(1 Pt 2):742–6.

    CAS  PubMed  Google Scholar 

  95. Katzav S, Segal S, Feldman M. Metastatic capacity of cloned T10 sarcoma cells that differ in H-2 expression: inverse relationship to their immunogenic potency. J Natl Cancer Inst. 1985;75(2):307–18.

    CAS  PubMed  Google Scholar 

  96. Katzav S, Segal S, Feldman M. Immuno-selection in vivo of H-2D phenotypic variants from a metastatic clone of sarcoma cells results in cell lines of altered metastatic competence. Int J Cancer. 1984;33(3):407–15.

    CAS  PubMed  Google Scholar 

  97. Garcia-Lora A, Algarra I, Gaforio JJ, Ruiz-Cabello F, Garrido F. Immunoselection by T lymphocytes generates repeated MHC class I-deficient metastatic tumor variants. Int J Cancer. 2001;91(1):109–19.

    CAS  PubMed  Google Scholar 

  98. Algarra I, Ohlen C, Perez M, Ljunggren HG, Klein G, Garrido F, et al. NK sensitivity and lung clearance of MHC-class-I-deficient cells within a heterogeneous fibrosarcoma. Int J Cancer. 1989;44(4):675–80.

    CAS  PubMed  Google Scholar 

  99. Smyth MJ, Crowe NY, Godfrey DI. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int Immunol. 2001;13(4):459–63.

    CAS  PubMed  Google Scholar 

  100. Cho HI, Lee YR, Celis E. Interferon gamma limits the effectiveness of melanoma peptide vaccines. Blood. 2010;117(1):135–44.

    PubMed  Google Scholar 

  101. Lu SM, Tremblay ME, King IL, Qi J, Reynolds HM, Marker DF, et al. HIV-1 Tat-induced microgliosis and synaptic damage via interactions between peripheral and central myeloid cells. PLoS One. 2011;6(9):e23915.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Sin JI, Park JB, Lee IH, Park D, Choi YS, Choe J, et al. Intratumoral electroporation of IL-12 cDNA eradicates established melanomas by Trp2(180–188)-specific CD8+ CTLs in a perforin/granzyme-mediated and IFN-gamma-dependent manner: application of Trp2(180–188) peptides. Cancer Immunol Immunother. 2012;61(10):1671–82.

    CAS  PubMed  Google Scholar 

  103. Baines J, Celis E. Immune-mediated tumor regression induced by CpG-containing oligodeoxynucleotides. Clin Cancer Res. 2003;9(7):2693–700.

    CAS  PubMed  Google Scholar 

  104. Reinis M, Simova J, Indrova M, Bieblova J, Bubenik J. CpG oligodeoxynucleotides are effective in therapy of minimal residual tumour disease after chemotherapy or surgery in a murine model of MHC class I-deficient, HPV16-associated tumours. Int J Oncol. 2007;30(5):1247–51.

    CAS  PubMed  Google Scholar 

  105. Reinis M, Simova J, Bubenik J. Inhibitory effects of unmethylated CpG oligodeoxynucleotides on MHC class I-deficient and -proficient HPV16-associated tumours. Int J Cancer. 2006;118(7):1836–42.

    CAS  PubMed  Google Scholar 

  106. Reinis M. Immunotherapy of MHC class I-deficient tumors. Future Oncol. 2010;6(10):1577–89.

    CAS  PubMed  Google Scholar 

  107. Simova J, Bubenik J, Bieblova J, Rosalia RA, Fric J, Reinis M. Depletion of T(reg) cells inhibits minimal residual disease after surgery of HPV16-associated tumours. Int J Oncol. 2006;29(6):1567–71.

    CAS  PubMed  Google Scholar 

  108. Indrova M, Simova J, Bieblova J, Bubenik J, Reinis M. NK1.1+ cells are important for the development of protective immunity against MHC I-deficient, HPV16-associated tumours. Oncol Rep. 2011;25(1):281–8.

    CAS  PubMed  Google Scholar 

  109. Manning J, Indrova M, Lubyova B, Pribylova H, Bieblova J, Hejnar J, et al. Induction of MHC class I molecule cell surface expression and epigenetic activation of antigen-processing machinery components in a murine model for human papilloma virus 16-associated tumours. Immunology. 2008;123(2):218–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Bao L, Dunham K, Lucas K. MAGE-A1, MAGE-A3, and NY-ESO-1 can be upregulated on neuroblastoma cells to facilitate cytotoxic T lymphocyte-mediated tumor cell killing. Cancer Immunol Immunother. 2011;60(9):1299–307.

    CAS  PubMed  Google Scholar 

  111. Simova J, Pollakova V, Indrova M, Mikyskova R, Bieblova J, Stepanek I, et al. Immunotherapy augments the effect of 5-azacytidine on HPV16-associated tumours with different MHC class I-expression status. Br J Cancer. 2011;105(10):1533–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Indrova M, Bieblova J, Jandlova T, Vonka V, Pajtasz-Piasecka E, Reinis M. Chemotherapy, IL-12 gene therapy and combined adjuvant therapy of HPV 16-associated MHC class I-proficient and -deficient tumours. Int J Oncol. 2006;28(1):253–9.

    CAS  PubMed  Google Scholar 

  113. Porgador A, Brenner B, Vadai E, Feldman M, Eisenbach L. Immunization by gamma-IFN-treated B16-F10.9 melanoma cells protects against metastatic spread of the parental tumor. Int J Cancer Suppl. 1991;6:54–60.

    CAS  PubMed  Google Scholar 

  114. Mandelboim O, Feldman M, Eisenbach L. H-2K double transfectants of tumor cells as antimetastatic cellular vaccines in heterozygous recipients. Implications for the T cell repertoire. J Immunol. 1992;148(11):3666–73.

    CAS  PubMed  Google Scholar 

  115. Porgador A, Bannerji R, Watanabe Y, Feldman M, Gilboa E, Eisenbach L. Antimetastatic vaccination of tumor-bearing mice with two types of IFN-gamma gene-inserted tumor cells. J Immunol. 1993;150(4):1458–70.

    CAS  PubMed  Google Scholar 

  116. Lim YS, Kang BY, Kim EJ, Kim SH, Hwang SY, Kim TS. Augmentation of therapeutic antitumor immunity by B16F10 melanoma cells transfected by interferon-gamma and allogeneic MHC class I cDNAs. Mol Cells. 1998;8(5):629–36.

    CAS  PubMed  Google Scholar 

  117. Fisher M, Yang LX. Anticancer effects and mechanisms of polysaccharide-K (PSK): implications of cancer immunotherapy. Anticancer Res. 2002;22(3):1737–54.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank I. Linares, A.B. Rodriguez, and E. Arias for technical advice. This study was supported by grants from the ISCIII-FEDER (CP03/0111, PI12/02031, PI 08/1265; PI 11/01022, RETIC RD 06/020), Junta de Andalucía (Group CTS-143 and CTS-695, CTS-3952, CVI-4740 grants), and European Community (LSHC-CT-2004-503306, OJ 2004/c158, 18234). A.M.G.L. was supported by Miguel Servet Contract CP03/0111 and Contract I3 from ISCIII and FPS, I.R. by Rio-Hortega contract CM12/00033 from ISCIII.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel M. Garcia-Lora PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Romero, I., Algarra, I., Garcia-Lora, A.M. (2015). MHC Class I Molecules and Cancer Progression: Lessons Learned from Preclinical Mouse Models. In: Rezaei, N. (eds) Cancer Immunology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44006-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44006-3_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44005-6

  • Online ISBN: 978-3-662-44006-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics