Skip to main content

Ultimate Positivity is Decidable for Simple Linear Recurrence Sequences

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8573))

Included in the following conference series:

Abstract

We consider the decidability and complexity of the Ultimate Positivity Problem, which asks whether all but finitely many terms of a given rational linear recurrence sequence (LRS) are positive. Using lower bounds in Diophantine approximation concerning sums of S-units, we show that for simple LRS (those whose characteristic polynomial has no repeated roots) the Ultimate Positivity Problem is decidable in polynomial space. If we restrict to simple LRS of a fixed order then we obtain a polynomial-time decision procedure. As a complexity lower bound we show that Ultimate Positivity for simple LRS is at least as hard as the decision problem for the universal theory of the reals: a problem that is known to lie between coNP and PSPACE.

The full version of this paper is available as [23].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amoroso, F., Viada, E.: Small points on subvarieties of a torus. Duke Mathematical Journal 150(3) (2009)

    Google Scholar 

  2. Bell, J.P., Gerhold, S.: On the positivity set of a linear recurrence. Israel Jour. Math. 57 (2007)

    Google Scholar 

  3. Bell, P., Delvenne, J.-C., Jungers, R., Blondel, V.: The continuous Skolem-Pisot problem. Theor. Comput. Sci. 411(40-42), 3625–3634 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berstel, J., Mignotte, M.: Deux propriétés décidables des suites récurrentes linéaires. Bull. Soc. Math. France 104 (1976)

    Google Scholar 

  5. Blondel, V., Jeandel, E., Koiran, P., Portier, N.: Decidable and undecidable problems about quantum automata. SIAM J. Comput. 34(6), 1464–1473 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Blondel, V., Tsitsiklis, J.: A survey of computational complexity results in systems and control. Automatica 36(9), 1249–1274 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer (1997)

    Google Scholar 

  8. Canny, J.: Some algebraic and geometric computations in PSPACE. In: Proceedings of STOC 1988, pp. 460–467. ACM (1988)

    Google Scholar 

  9. Cassels, J.: An introduction to Diophantine approximation. Camb. Univ. Pr. (1965)

    Google Scholar 

  10. Everest, G., van der Poorten, A., Shparlinski, I., Ward, T.: Recurrence Sequences. American Mathematical Society (2003)

    Google Scholar 

  11. Evertse, J.-H.: On sums of S-units and linear recurrences. Compositio Mathematica 53(2), 225–244 (1984)

    MATH  MathSciNet  Google Scholar 

  12. Evertse, J.-H., Schlickewei, H.P., Schmidt, W.M.: Linear equations in variables which lie in a multiplicative group. Ann. Math. 155(3) (2002)

    Google Scholar 

  13. Fröhlich, A., Taylor, M.: Algebraic Number Theory. Camb. Univ. Press (1993)

    Google Scholar 

  14. Halava, V., Harju, T., Hirvensalo, M.: Positivity of second order linear recurrent sequences. Discrete Applied Mathematics 154(3) (2006)

    Google Scholar 

  15. Halava, V., Harju, T., Hirvensalo, M., Karhumäki, J.: Skolem’s problem – on the border between decidability and undecidability. Technical Report 683, Turku Centre for Computer Science (2005)

    Google Scholar 

  16. Kannan, R., Lipton, R.J.: Polynomial-time algorithm for the orbit problem. JACM 33(4) (1986)

    Google Scholar 

  17. Laohakosol, V., Tangsupphathawat, P.: Positivity of third order linear recurrence sequences. Discrete Applied Mathematics 157(15) (2009)

    Google Scholar 

  18. Lech, C.: A note on recurring series. Ark. Mat. 2 (1953)

    Google Scholar 

  19. Mahler, K.: Eine arithmetische Eigenschaft der Taylor Koeffizienten rationaler Funktionen. Proc. Akad. Wet. Amsterdam 38 (1935)

    Google Scholar 

  20. Masser, D.W.: Linear relations on algebraic groups. In: New Advances in Transcendence Theory. Camb. Univ. Press (1988)

    Google Scholar 

  21. Mignotte, M., Shorey, T., Tijdeman, R.: The distance between terms of an algebraic recurrence sequence. J. für die reine und angewandte Math. 349 (1984)

    Google Scholar 

  22. Ouaknine, J., Worrell, J.: Decision problems for linear recurrence sequences. In: Finkel, A., Leroux, J., Potapov, I. (eds.) RP 2012. LNCS, vol. 7550, pp. 21–28. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Ouaknine, J., Worrell, J.: Ultimate Positivity is decidable for simple linear recurrence sequences. CoRR, abs/1309.1914 (2013)

    Google Scholar 

  24. Ouaknine, J., Worrell, J.: On the Positivity Problem for simple linear recurrence sequences. In: Esparza, J., Fraigniaud, P., Husfeldt, T. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, Springer, Heidelberg (2014); CoRR, abs/1309.1550

    Google Scholar 

  25. Ouaknine, J., Worrell, J.: Positivity problems for low-order linear recurrence sequences. In: Proceedings of SODA 2014. ACM-SIAM (2014)

    Google Scholar 

  26. Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals. J. Symb. Comp. (1992)

    Google Scholar 

  27. Rozenberg, G., Salomaa, A.: Cornerstones of Undecidability. Prentice Hall (1994)

    Google Scholar 

  28. Skolem, T.: Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen. In: Comptes rendus du congrès des mathématiciens scandinaves (1934)

    Google Scholar 

  29. Soittola, M.: On D0L synthesis problem. In: Lindenmayer, A., Rozenberg, G. (eds.) Automata, Languages, Development. North-Holland (1976)

    Google Scholar 

  30. Tao, T.: Structure and randomness: pages from year one of a mathematical blog. American Mathematical Society (2008)

    Google Scholar 

  31. van der Poorten, A., Schlickewei, H.: The growth conditions for recurrence sequences. Macquarie Math. Reports (82-0041) (1982)

    Google Scholar 

  32. Vereshchagin, N.K.: The problem of appearance of a zero in a linear recurrence sequence. Mat. Zametki 38(2) (1985) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ouaknine, J., Worrell, J. (2014). Ultimate Positivity is Decidable for Simple Linear Recurrence Sequences. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43951-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43951-7_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43950-0

  • Online ISBN: 978-3-662-43951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics