Skip to main content

Reversible and Robust Audio Watermarking Based on Quantization Index Modulation and Amplitude Expansion

  • Conference paper
  • First Online:
Digital-Forensics and Watermarking (IWDW 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8389))

Included in the following conference series:

Abstract

Existing techniques for reversible hiding of data in audio signals are so fragile that no data can be extracted from a modified stego audio signal. The present study proposes a reversible and robust technique for hiding data in audio. A robust payload is embedded based on quantization index modulation (QIM) at the averaged root mean square levels of the segmented stego waveforms. Simultaneously, a reversible payload is embedded into the apertures in the amplitude histogram created by amplitude expansion in QIM. Computer simulation was conducted to evaluate the robustness and size of the reversible payload for 20 music pieces. MP3, tandem MP3 coding, MPEG4AAC, and bandpass filtering of the stego signals revealed a maximum bit error rate of less than 16 % in 6-bits per second robust payload. Objective measurement of the stego audio quality using the perceptual evaluation of audio quality method revealed that the mean objective difference grade was higher than ‘perceptible, but not annoying’. The amount of reversible payload was above several kilobits per second.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 4C Entity: 4C 12 BIT watermark specification (1999). http://www.4centity.com/technologies.aspx

  2. Alavianmehr, M., Rezaei, M., Helfroush, M., Tashk, A.: A lossless data hiding scheme on video raw data robust against H.264/AVC compression. In: Proceedings of the 2nd International Conference on Computer and Knowledge Engineering, pp. 194–198 (2012)

    Google Scholar 

  3. An, L., Gao, X., Deng, C.: Reliable embedding for robust reversible watermarking. In: Proceedings of the Second International Conference on Internet Multimedia Computing and Service, pp. 57–60 (2010)

    Google Scholar 

  4. An, L., Gao, X., Li, X., Tao, D., Deng, C., Li, J.: Robust reversible watermarking via clustering and enhanced pixel-wise masking. IEEE Trans. Image Process. 21(8), 3598–3611 (2012)

    Article  MathSciNet  Google Scholar 

  5. AV & IT Equipment Standardization Committee: JEITA CPR-2601 the designation of audio quality for memory audio (2010). http://www.jeita.or.jp/japanese/standard/book/CPR-2601/

  6. Celik, M., Sharma, G., Tekalp, A., Saber, E.: Lossless generalized-LSB data embedding. IEEE Trans. Image Process. 14(2), 253–266 (2005)

    Article  Google Scholar 

  7. Chen, B., Wornell, G.: Digital watermarking and information embedding using dither modulation. In: Proceedings of IEEE Second Workshop on Multimedia Signal Processing, pp. 273–278 (1998)

    Google Scholar 

  8. Cvejic, N., Seppänen, T.: Introduction to digital audio watermarking. In: Cvejic, N., Seppänen, T. (eds.) Digital Audio Watermarking Techniques and Technologies, Applications and Benchmarks, pp. 1–10. Information Science Reference, New York (2008)

    Google Scholar 

  9. EBU Committee: sound quality assessment material recordings for subjective tests. http://tech.ebu.ch/webdav/site/tech/shared/tech/tech3253.pdf

  10. Goto, M., Hashiguchi, H., Nishimura, T., Oka, R.: RWC music database: music genre database and musical instrument sound database. In: Proceedings of the 4th International Conference on Music Information Retrieval (ISMIR 2003), pp. 229–230 (2003)

    Google Scholar 

  11. Huang, H.C., Fang, W.C., Tsai, I.T.: Reversible data hiding using histogram-based difference expansion. In: IEEE International Symposium on Circuits and Systems, pp. 1661–1664 (2009)

    Google Scholar 

  12. Huang, X., Echizen, I., Nishimura, A.: A new approach of reversible acoustic steganography for tampering detection. In: Proceedings of IIHMSP2010, pp. 538–542 (2010)

    Google Scholar 

  13. Kabal, P.: An examination and interpretation of ITU-R BS.1387: Perceptual evaluation of audio quality. TSP Lab Technical report, Department of Electrical & Computer Engineering, McGill University, pp. 1–89 (2002)

    Google Scholar 

  14. Li, M., Jiao, Y., Niu, X.: Reversible watermarking for compressed speech. In: Proceedings of Eighth International Conference on Intelligent System Design and Applications, pp. 197–201 (2008)

    Google Scholar 

  15. Nishimura, A.: Reversible audio data hiding using linear prediction and error expansion. In: Proceedings of IIHMSP2011, pp. 318–321 (2011)

    Google Scholar 

  16. Nishimura, A., Unoki, M., Ogiwara, A., Kondo, K.: Objective evaluation of sound quality for attacks on robust audio watermarking. In: International Congress on Acoustics 2013, POMA, vol. 19 (2013)

    Google Scholar 

  17. Shi, Y.Q.: Reversible data hiding. In: Cox, I., Kalker, T., Lee, H.-K. (eds.) IWDW 2004. LNCS, vol. 3304, pp. 1–12. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Sonoda, K., Takizawa, O.: Audio watermarking using QIM on wavelet packet coefficients. In: Proceedings of IIHMSP, pp. 72–75 (2009)

    Google Scholar 

  19. Tan, W., Yang, S., Chen, Y., Zhou, J.: Research on DFT domain digital audio watermarking algorithm based on quantization. In: Proceedings of First International Workshop on Education Technology and Computer Science, pp. 72–75 (2009)

    Google Scholar 

  20. van der Veen, M., van Leest, A., Bruekers, F.: Reversible audio watermarking. In: Proceedings of the 114th AES Convention, No. 5818 (2003)

    Google Scholar 

  21. Vleeschouwer, C.D., Delaigle, J., Macq, B.: Circular interpretation of bijective transformations in lossless watermarking for media asset management. IEEE Trans. Multimed. 5(1), 97–105 (2003)

    Article  Google Scholar 

  22. Xiang, S., Huang, J.: Histogram-based audio watermarking against time-scale modification and cropping attacks. IEEE Trans. Multimed. 9(7), 1357–1372 (2007)

    Article  Google Scholar 

  23. Yan, D., Wang, R.: Reversible data hiding for audio based on prediction error expansion. In: Proceedings of IIHMSP2008, pp. 249–252 (2008)

    Google Scholar 

  24. Yang, B., Schmucker, M., Busch, C., Niu, X., Sun, S.: Approaching optimal value expansion for reversible watermarking. In: Proceedings of Multimedia and Security Workshop 2005, pp. 95–101 (2005)

    Google Scholar 

  25. Zain, J., Clarke, M.: Reversible watermarking surviving JPEG compression. In: Proceedings of the 27th Annual International Conference on Engineering in Medicine and Biology Society, pp. 3759–3762 (2006)

    Google Scholar 

  26. Zhao, X., Guo, Y., Liu, J., Yan, Y.: Quantization index modulation audio watermarking system using a psychoacoustic model. In: Proceedings of IEEE International Conference on Information, Communications and Signal Processing, pp. 1–4 (2011)

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by Grant-in-Aid for Scientific Research (KAKENHI) (C) 24500128, 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Nishimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nishimura, A. (2014). Reversible and Robust Audio Watermarking Based on Quantization Index Modulation and Amplitude Expansion. In: Shi, Y., Kim, HJ., Pérez-González, F. (eds) Digital-Forensics and Watermarking. IWDW 2013. Lecture Notes in Computer Science(), vol 8389. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43886-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43886-2_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43885-5

  • Online ISBN: 978-3-662-43886-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics