Skip to main content

Future Development of Infectious Microecology

  • Chapter
Infectious Microecology

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

  • 701 Accesses

Abstract

More and more studies indicate interactions between infectious diseases and microbiota. Advances in molecular techniques have led to a greater appreciation of the diversity of human microbiota, the extent of interactions with the human host, and how that relates to inter-individual variation. Realization of the interaction between infectious agents and the microbiota will definitely deepen our understanding of infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Konopka A. What is microbial community ecology? ISME J, 2009, 3: 1223–1230.

    Article  PubMed  Google Scholar 

  2. Raes J, Bork P. Molecular eco-systems biology: towards an understanding of community function. Nat Rev Microbiol, 2008, 6: 693–699.

    Article  CAS  PubMed  Google Scholar 

  3. Xu J, Mahowald M A, Ley R E, et al. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol, 2007, 5: e156.

    Google Scholar 

  4. Gorbach S L, Barza M, Giuliano M, et al. Colonization resistance of the human intestinal microflora: Testing the hypothesis in normal volunteers. Eur J Clin Microbiol Infect Dis, 1988, 7: 98–102.

    Article  CAS  PubMed  Google Scholar 

  5. Bjerketorp J, Ng Tze Chiang A, Hjort K, et al. Rapid lab-on-a-chip profiling of human gut bacteria. J Microbiol Methods, 2008, 72: 82–90.

    Article  CAS  PubMed  Google Scholar 

  6. Verberkmoes N C, Russell A L, Shah M, et al. Shotgun metaproteomics of the human distal gut microbiota. ISME J, 2009, 3: 179–189.

    Article  CAS  PubMed  Google Scholar 

  7. Tuohy K M, Gougoulias C, Shen Q, et al. Studying the human gut microbiota in the trans-omics era — focus on metagenomics and metabonomics. Curr Pharm Des, 2009, 15: 1415–1427.

    Article  CAS  PubMed  Google Scholar 

  8. Fujimura K E, Slusher NA, Cabana M D, et al. Role of the gut microbiota in defining human health. Expert Rev Anti Infect Ther, 2010, 8:435–454.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Bik E M, Long C D, Armitage G C, et al. Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J, 2010, 4: 962–974.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Keijser B J, Zaura E, Huse S M, et al. Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res, 2008, 87: 1016–1020.

    Article  CAS  PubMed  Google Scholar 

  11. Zaura E, Keijser B J, Huse S M, et al. Defining the healthy ‘core microbiome’ of oral microbial communities. BMC Microbiol, 2009, 9: 259.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Reyes A, Haynes M, Hanson N, et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature, 2010, 466:334–338.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. van Vliet M J, Harmsen H J, de Bont E S, et al. The role of intestinal microbiota in the development and severity of chemotherapy-induced mucositis. PLoS Pathog, 2010, 62: 1223–1236.

    Google Scholar 

  14. Manichanh C, Varela E, Martinez C, et al. The gut microbiota predispose to the pathophysiology of acute postradiotherapy diarrhea. Am J Gastroenterol, 2008, 103:1754–1761.

    Article  CAS  PubMed  Google Scholar 

  15. Stecher B, Chaffron S, Kappeli R, et al. Like will to like: Abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog, 2010, 6: e1000711.

    Google Scholar 

  16. Bailey M T, Dowd S E, Parry N M, et al. Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium. Infect Immun, 2010, 78:1509–1519.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. [17] Walk S T, Young V B. Emerging insights into antibiotic-associated diarrhea and clostridium difficile infection through the lens of microbial ecology. Interdiscip Perspect Infect Dis, 2008, 125081.

    Google Scholar 

  18. Wilson K H. The microecology of Clostridium difficile. Clin Infect Dis, 1993, 16: S214–S218.

    Article  Google Scholar 

  19. van Vliet M J, Tissing W J, Dun C A, et al. Chemotherapy treatment in pediatric patients with acute myeloid leukemia receiving antimicrobial prophylaxis leads to a relative increase of colonization with potentially pathogenic bacteria in the gut. Clin Infect Dis, 2009, 49: 262–270.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang M, Zhang C, Du H, et al. Pattern extraction of structural responses of gut microbiota to rotavirus infection via multivariate statistical analysis of clone library data. FEMS Microbiol Ecol, 2009, 70: 21–29.

    Article  PubMed  Google Scholar 

  21. Gori A, Tincati C, Rizzardini G, et al. Early impairment of gut function and gut flora supporting a role for alteration of gastrointestinal mucosa in human immunodeficiency virus pathogenesis. J Clin Microbiol, 2008, 46:757–758.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Tanaka K, Sawamura S, Satoh T, et al. Role of the indigenous microbiota in maintaining the virus-specific CD8 memory T cells in the lung of mice infected with murine cytomegalovirus. J Immunol, 2007, 178: 5209–5216.

    Article  CAS  PubMed  Google Scholar 

  23. Filoche S, Wong L, Sissons C H. Oral biofilms: Emerging concepts in microbial ecology. J Dent Res, 2010, 89: 8–18.

    Article  CAS  PubMed  Google Scholar 

  24. Spiller R, Garsed K. Infection, inflammation, and the irritable bowel syndrome. Dig Liver Dis, 2009, 41: 844–849.

    Article  CAS  PubMed  Google Scholar 

  25. Bohle L A, Brede D A, Diep D B, et al. The mucus adhesion promoting protein (MapA) of Lactobacillus reuteri is specifically degraded to an antimicrobial peptide. Appl Environ Microbiol, 2010, 76:7306–7309.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Medellin-Pena M J, Griffiths M W. Effect of molecules secreted by Lactobacillus acidophilus strain La-5 on Escherichia coli O157: H7 colonization. Appl Environ Microbiol, 2009, 75: 1165–1172.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Doron S I, Hibberd P L, Gorbach S L. Probiotics for prevention of antibiotic-associated diarrhea. J Clin Gastroenterol, 2008, 42: S58-S63.

    Article  Google Scholar 

  28. Surawicz C M, McFarland L V, Greenberg R N, et al. The search for a better treatment for recurrent Clostridium difficile disease: use of high-dose vancomycin combined with Saccharomyces boulardii. Clin Infect Dis, 2000, 31: 1012–1017.

    Article  CAS  PubMed  Google Scholar 

  29. Anukam K C, Osazuwa E O, Osadolor H B, et al. Yogurt containing probiotic Lactobacillus rhamnosus GR-1 and L. reuteri RC-14 helps resolve moderate diarrhea and increases CD4 count in HIV/AIDS patients. J Clin Gastroenterol, 2008, 42: 239–243.

    PubMed  Google Scholar 

  30. Reid G, Bruce A W. Low vaginal pH and urinary-tract infection. Lancet, 1995, 346: 1704.

    Article  CAS  PubMed  Google Scholar 

  31. Rea M C, Clayton E, O’Connor PM, et al. Antimicrobial activity of lacticin 3,147 against clinical Clostridium difficile strains. J Med Microbiol, 2007, 56: 940–946.

    Article  CAS  PubMed  Google Scholar 

  32. Shanahan F. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: Host-microbe interactions in the gut: Target for drug therapy, opportunity for drug discovery. Clin Exp Immunol, 2010, 160: 92–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. [33] Mai V, Ukhanova M, Visone L, et al. Bacteriophage administration reduces the concentration of listeria monocytogenes in the gastrointestinal tract and its translocation to spleen and liver in experimentally infected mice. Int J Microbiol, 2010, 624234.

    Google Scholar 

  34. Possemiers S, Bolca S, Verstraete W, et al. The intestinal microbiome: A separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia, 2010, 82: 53–66.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, L., Chen, Y. (2014). Future Development of Infectious Microecology. In: Li, L. (eds) Infectious Microecology. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43883-1_23

Download citation

Publish with us

Policies and ethics