Skip to main content

Production of Pharmaceutical Grade Recombinant Native Aprotinin and Non-oxidized Aprotinin Variants Under Greenhouse and Field Conditions

  • Chapter
  • First Online:
Commercial Plant-Produced Recombinant Protein Products

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 68))

Abstract

Recombinant bovine pancreatic aprotinin was produced in Nicotiana species (N. benthamiana and N. excelsiana), a transient expression vector derived from the tobacco mosaic virus genome. Animal-source-free recombinant aprotinin was made in plants grown under controlled (greenhouse) conditions and in the field. Product purified from both production environments showed virtually identical performance and specifications as the bovine-derived pharmaceutical product. Further, the product has excellent stability characteristics and is currently being marketed as a cell culture excipient. Issues, such as oxidative variation of aprotinin product, were addressed by changing growth conditions and by substitution of amino acids for the site of oxidation. The resulting aprotinin variants showed no oxidation, yet retained full activity and production yields. The production parameters of aprotinin provide an affordable way to make high-quality pharmaceuticals in plants. The speed and flexibility of transient expression also allows rapid tailoring of products to address biochemical challenges and product requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Azzoni AR, Kusnadi AR, Miranda EA, Nikolov ZL (2002) Recombinant aprotinin produced in transgenic corn seed: extraction and purification studies. Biotechnol Bioeng 80:268–276

    Article  CAS  PubMed  Google Scholar 

  • Beierlein W, Scheule AM, Dietrich W, Ziemer G (2005) Forty years of clinical aprotinin use: a review of 124 hypersensitivity reactions. Ann Thorac Surg 79:741–748

    Article  PubMed  Google Scholar 

  • Concetti A, Angeletti M, Fioretti E, Ascoli F (1989) Selective oxidation of methionine residues in Kunitz-type protease inhibitors. Biol Chem Hoppe Seyler 370:723–728

    Article  CAS  PubMed  Google Scholar 

  • Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Metabolites 2:303–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farnsworth NR, Akerele O, Bingel AS, Soejarto DD, Guo Z (1985) Medicinal plants in therapy. Bull World Health Organ 63:965–981

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer R, Twyman RM, Schillberg S (2003) Production of antibodies in plants and their use for global health. Vaccine 21:820–825

    Article  CAS  PubMed  Google Scholar 

  • Fitzmaurice WP (2002) Interspecific Nicotiana hybrids and their progeny. US Patent no. 6,344,597

    Google Scholar 

  • Floss DM, Falkenburg D, Conrad U (2007) Production of vaccines and therapeutic antibodies for veterinary applications in transgenic plants: an overview. Transgenic Res 16:315–332

    Article  CAS  PubMed  Google Scholar 

  • Fritz H, Wunderer G (1983) Biochemistry and applications of aprotinin, the Kallikrein inhibitor from bovine organs. Arzneimittelforschung 33:479–494

    CAS  PubMed  Google Scholar 

  • Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342:76–78

    Article  CAS  PubMed  Google Scholar 

  • Laskowski M Jr, Kato I (1980) Protein inhibitors of proteinases. Annu Rev Biochem 49:593–626

    Article  CAS  PubMed  Google Scholar 

  • Lico C, Chen Q, Santi L (2008) Viral vectors for production of recombinant proteins in plants. J Cell Physiol 216:366–377

    Article  CAS  PubMed  Google Scholar 

  • Ma JKC, Drake PMW, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805

    Article  CAS  PubMed  Google Scholar 

  • Maffulli N, Walley G, Sayana MK, Longo UG, Denaro V (2008) Eccentric calf muscle training in athletic patients with Achilles tendinopathy. Disabil Rehabil 30:1677–1684

    Article  PubMed  Google Scholar 

  • Mangano DT, Tudor IC, Dietzel C (2006) The risk associated with aprotinin in cardiac surgery. NEJM 354:353–365

    Article  CAS  PubMed  Google Scholar 

  • Mangano DT, Miao Y, Vuylsteke A, Tudor IC, Juneja R, Filipescu D, Hoeft A, Fontes ML, Hillel Z, Ott E, Titov T, Dietzel C, Levin J (2007) Mortality associated with aprotinin during 5 years following coronary artery bypass graft surgery. JAMA 297:471–479

    Article  CAS  PubMed  Google Scholar 

  • Maxmen A (2012) Drug-making plant blooms. Nature 485:160

    Article  CAS  PubMed  Google Scholar 

  • Munoz JJ, Birkmeyer NJO, Birkmeyer JD, O’Conner GT, Dacy KJ (1999) Is epsilon-aminocaproic acid as effective as aprotinin in reducing bleeding with cardiac surgery? A meta-analysis. Circulation 99:81–89

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  CAS  PubMed  Google Scholar 

  • Nordic Pharma Group (2012) http://www.nordicpharmagroup.com/art-4-4-38-the-nordic-group-acquires-rights-to-trasylol-from-bayer-healthcare.html. Cited 09.08.2013

  • Odum JN (2001) Biotech manufacturing: is the crisis real? Pharm Eng 21:22–33

    Google Scholar 

  • Orchard J, Massey A, Brown R, Cardon-Dunbar A, Hofmann J (2008) Successful management of tendinopathy with injections of the MMP-inhibitor aprotinin. Clin Orthop Relat Res 466:1625–1632

    Article  PubMed Central  PubMed  Google Scholar 

  • Plasson C, Michel R, Lienard D, Saint-Jore-Dupas C, Sourrouille C, de March GG, Gomord V (2009) Production of recombinant proteins in suspension-cultured plant cells. Methods Mol Biol 483:145–161

    Article  CAS  PubMed  Google Scholar 

  • Plesha MA, Huang TK, Dandekar AM, Falk B, McDonald K (2009) Optimization of the bioprocessing conditions for scale-up of transient production of a heterologous protein in plants using a chemically inducible viral amplicon expression system. Biotechnol Prog 25:722–734

    Article  CAS  PubMed  Google Scholar 

  • Pogue GP, Holzberg S (2013) Transient virus expression systems for recombinant protein production in dicot- and monocotyledonous plants. In: Dhal NK, Sahu SC (eds) Plant science. InTech Press, Rijeka, Croatia, pp 189-216. ISBN 980-953-307-033-4

    Google Scholar 

  • Pogue GP, Lindbo JA, Dawson WO, Turpen TH (1998) Tobamovirus transient expression vectors: tools for plant biology and high-level expression of foreign proteins in plants. In: Gelvin SB, Schilperoot RA (eds) Plant molecular biology manual, vol L4. Kluwer Academic, Dordrecht, pp 1–27

    Google Scholar 

  • Pogue GP, Lindbo JA, Garger SJ, Fitzmaurice WP (2002) Making an ally from an enemy: plant virology and the new agriculture. Annu Rev Phytopathol 40:45–74

    Article  CAS  PubMed  Google Scholar 

  • Pogue GP, Vojdani F, Palmer KE, Hiatt E, Hume S, Phelps J, Long L, Bohorova N, Kim D, Pauly M, Velasco J, Whaley K, Zeitlin L, Garger SJ, White E, Bai Y, Haydon H, Bratcher B (2010) Production of pharmaceutical-grade recombinant aprotinin and a monoclonal antibody product using plant-based transient expression systems. Plant Biotechnol J 8:638–654

    Article  CAS  PubMed  Google Scholar 

  • Rademakers LM, Gründeman PF, Bolderman RW, van der Veen FH, Maessen JG (2009) Stability of an autologous platelet clot in the pericardial sac: an experimental and clinical study. J Thorac Cardiovasc Surg 137:1190–1194

    Article  PubMed  Google Scholar 

  • Rival S, Wisniewski JP, Langlais A, Kaplan H, Freyssinet G, Vancanneyt G, Vunsh R, Perl A, Edelman M (2008) Spirodela (duckweed) as an alternative production system for pharmaceuticals: a case study, aprotinin. Transgenic Res 4:503–513

    Article  Google Scholar 

  • Sedrakyan A, Treasure T, Elefteriades JA (2004) Effect of aprotinin on clinical outcomes in coronary artery bypass graft surgery: a systematic review and meta-analysis of randomized clinical trials. J Thorac Cardiovasc Surg 128:442–448

    Article  CAS  PubMed  Google Scholar 

  • Sharma AK, Sharma MK (2009) Plants as bioreactors: recent developments and emerging opportunities. Biotechnol Adv 27:811–832

    Article  CAS  PubMed  Google Scholar 

  • Shivprasad S, Pogue GP, Lewandowski DJ, Hidalgo J, Donson J, Grill LK, Dawson WO (1999) Heterologous sequences greatly affect foreign gene expression in tobacco mosaic virus-based vectors. Virology 255:312–323

    Article  CAS  PubMed  Google Scholar 

  • Sourrouille C, Marshall B, Liénard D, Faye L (2009) From Neanderthal to nanobiotech: from plant potions to pharming with plant factories. Methods Mol Biol 483:1–23

    Article  CAS  PubMed  Google Scholar 

  • Stamou SC, Reames MK, Skipper E, Stiegel RM, Nussbaum M, Geller R, Robicsek F, Lobdell KW (2009) Aprotinin in cardiac surgery patients: is the risk worth the benefit? Eur J Cardiothorac Surg 36:869–875

    Article  PubMed  Google Scholar 

  • Taylor L (1996) The healing power of rainforest herbs. Square One Publishers, City Park, NY

    Google Scholar 

  • Thiel KA (2004) Biomanufacturing, from bust to boom….to bubble? Nat Biotechnol 22:1365–1372

    Article  CAS  PubMed  Google Scholar 

  • Tissot G, Canard H, Nadai M, Martone A, Botterman J, Dubald M (2008) Translocation of aprotinin, a therapeutic protease inhibitor, into the thylakoid lumen of genetically engineered tobacco chloroplasts. Plant Biotechnol J 6:309–320

    Article  CAS  PubMed  Google Scholar 

  • Zhong Q, Xu L, Zhang C, Glatz CE (2007) Purification of recombinant aprotinin from transgenic corn germ fraction using ion exchange and hydrophobic interaction chromatography. Appl Microbiol Biotechnol 76:607–613

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the efforts of Steve Garger, Terri Cameron, Steve Hume, Kathy Hanley, Josh Morton, and Jennifer Poole in the production and characterization of the r-aprotinin product.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory P. Pogue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pogue, G.P., Vojdani, F., Palmer, K.E., White, E., Haydon, H., Bratcher, B. (2014). Production of Pharmaceutical Grade Recombinant Native Aprotinin and Non-oxidized Aprotinin Variants Under Greenhouse and Field Conditions. In: Howard, J., Hood, E. (eds) Commercial Plant-Produced Recombinant Protein Products. Biotechnology in Agriculture and Forestry, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43836-7_5

Download citation

Publish with us

Policies and ethics