Skip to main content

Design of a Modular Knee-Ankle-Foot-Orthosis Using Soft Actuator for Gait Rehabilitation

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8069))

Included in the following conference series:

Abstract

The design of a modular wearable knee-ankle-foot-orthosis (KAFO) using novel soft actuator for post-stroke gait rehabilitation is presented. The configuration, different modules, working principles, actuation, control concepts, novel features etc. of the KAFO are introduced. As the actuation method plays the key role for the overall performances of the KAFO, the design, configuration, working principles, kinematics, dynamics, control analyses etc. of a novel soft actuation system are presented in details. The novel actuator is a variable impedance series elastic actuator designed with one motor and two types of springs in series, which is light in weight and compact in size. The actuator model is simulated for various conditions, and the results show satisfactory dynamic performances in terms of stability, safety, force bandwidths, variable impedance, compliance, efficiency etc. Then, the fabrication of the physical KAFO and its clinical validation with stroke patients are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.myheart.org.sg/heart-facts/statistics/

  2. Wheeler, J., Krebs, H., Hogan, N.: An ankle robot for a modular gait rehabilitation system. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 1680–1684

    Google Scholar 

  3. Brainin, M., Bornstein, N., Boysen, G., Demarin, V.: Acute neurological stroke care in Europe: results of the European stroke care inventory. Eur. J. Neurol. 7(1), 5–10 (2000)

    Article  Google Scholar 

  4. Australian Institute of Health and Welfare.: Heart, stroke and vascular diseases – Australian facts 2004. AIHW Cat. No. CVD 27, Canberra, AIHW and National Heart Foundation of Australia (Cardiovascular Disease Series No. 22)

    Google Scholar 

  5. Australian Institute of Health and Welfare.: Secondary prevention and rehabilitation after coronary events or stroke: a review of monitoring issues. AIHW Cat. No. CVD 25, AIHW, Canberra (2003)

    Google Scholar 

  6. Turin, T., Kokubo, Y., Murakami, Y., Higashiyama, A., Rumana, N., Watanabe, M.: Lifetime risk of stroke in Japan. Stroke 41, 1552–1554 (2010)

    Article  Google Scholar 

  7. Bharadwaj, K., Hollander, K.W., Mathis, C.A., Sugar, T.G.: Spring over muscle (SOM) actuator for rehabilitation devices. In: Proceedings of the 2004 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 2726–2729, 1–5 Sept 2004

    Google Scholar 

  8. Taub, E., Uswatte, G., Pidikiti, R.: Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation - a clinical review. J. Rehabil. Res. Dev. 36, vii–viii (1999)

    Google Scholar 

  9. Rahman, S., Ikeura, R.: A novel variable impedance compact compliant ankle robot for overground gait rehabilitation and assistance. Procedia Eng. (Elsevier) 41, 522–531 (2012)

    Article  Google Scholar 

  10. Veneman, J., Kruidhof, R., Hekman, E., Ekkelenkamp, R., Van Asseldonk, E.H.F., Van der Kooij, H.: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 379–386 (2007)

    Article  Google Scholar 

  11. Peshkin, M., Brown, D.A., Santos-Munne, J.J., Makhlin, A., Lewis, E., Colgate, J.E., Patton, J., Schwandt, D.: KineAssist: a robotic overground gait and balance training device. In: Proceedings of the 2005 9th IEEE International Conference on Rehabilitation Robotics, pp. 241–246

    Google Scholar 

  12. Allemand, Y., Stauffer, Y., Clavel, R., Brodard, R.: Design of a new lower extremity orthosis for overground gait training with the WalkTrainer. In: Proceedings of the 2009 IEEE International Conference on Rehabilitation Robotics, pp. 550–555

    Google Scholar 

  13. Zhang, X., Kong, X., Liu, G., Wang, Y.: Research on the walking gait coordinations of the lower limb rehabilitation robot. In: Proceedings of the 2010 IEEE International Conference on Robotics and Biomimetics, pp.1233–1237

    Google Scholar 

  14. Yoon, J., Novandy, B., Yoon, C., Park, K.: A 6-DOF gait rehabilitation robot with upper and lower limb connections that allows walking velocity updates on various terrains. IEEE/ASME Trans. Mechatron. 15(2), 201–215 (2010)

    Article  Google Scholar 

  15. Jezernik, S., Colombo, G., Keller, T., Morari, F.: Robotic orthosis lokomat: a rehabilitation and research tool. Neuromodulation 6(2), 108–115 (2003)

    Article  Google Scholar 

  16. Galvez, J.A., Reinkensmeyer, D.J.: Robotics for gait training after spinal cord injury. Technol. Strateg. Enhanc. Mobil. 11(2), 18–33 (2005)

    Google Scholar 

  17. Krebs, H.I., Ferraro, M., Buerger, S.P., Newbery, M.J., Makiyama, A., Sandmann, M., Lynch, D., Volpe, B.T., Hogan, N.: Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus. J. NeuroEng. Rehabil. 1, 5 (2004)

    Article  Google Scholar 

  18. Nef, T., Mihelj, M., Colombo, G., Riener, R.: ARMin - robot for rehabilitation of the upper extremities. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, pp. 3152–3157

    Google Scholar 

  19. Lee, C., Seo, K., Oh, C., Lee, J.: A system for gait rehabilitation with body weight support: mobile manipulator approach. J. HWRSERC 2(3), 16–21 (2000)

    Google Scholar 

  20. Vische, D., Kathib, O.: Design and development of high performance torque-controlled joints. IEEE Trans. Robot. Autom. 11(4), 537–544 (1995)

    Article  Google Scholar 

  21. Ferris, D.P., Farley, C.T.: Interaction of leg stiffness and surface stiffness during human hopping. J. Appl. Physiol. (American Physiological Society) 82, 15–22 (1997)

    Google Scholar 

  22. Yang, C., Ganesh, G., Haddadin, S., Parusel, S., Albu-Schaeffer, A., Burdet, E.: Human-like adaptation of force and impedance in stable and unstable interactions. IEEE Trans. Robot. 27(5), 918–930 (2011)

    Article  Google Scholar 

  23. Robinson, D., Pratt, J., Paluska, D., Pratt, G.: Series elastic actuator development for a biomimetic walking robot. In: Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 561–568

    Google Scholar 

  24. Vallery, H., Veneman, J., Asseldonk, E., Ekkelenkamp, R., Buss, M., Kooij, H.: Compliant actuation of rehabilitation robots. IEEE Robot. Autom. Mag. 15(3), 60–69 (2008)

    Article  Google Scholar 

  25. Tsagarakis, N., Laffranchi, M., Vanderborght, B., Caldwell, D.: A compact soft actuator unit for small scale human friendly robots. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation, pp. 4356–4362

    Google Scholar 

  26. Hirzinger, G., Sporer, N., Albu-Schaffer, A., Hahnle, M., Krenn, R., Pascucci, A., Schedl, M.: DLR’s torque-controlled light weight robot III – are we reaching the technological limits now? In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, pp. 1710–1716 (2002)

    Google Scholar 

  27. Albu-Schaffer, A., Eiberger, O., Grebenstein, M., Haddadin, S., Ott, C., Wimbock, T., Wolf, S., Hirzinger, G.: Soft robotics. IEEE Robot. Autom. Mag. 15(3), 20–30 (2008)

    Article  Google Scholar 

  28. Schiavi, R., Grioli, G., Sen, S., Bicchi, A.: VSA-II: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans. In: Proceedings of the 2008 IEEE International Conference on Robotics and Automation, pp. 2171–2176

    Google Scholar 

  29. Wolf, S., Hirzinger, G.: A new variable stiffness design: matching requirements of the next robot generation. In: Proceedings of the 2008 IEEE International Conference on Robotics and Automation, pp. 1741–1746

    Google Scholar 

  30. Tagliamonte, N.L., Sergi, F., Carpino, G., Accoto, D., Guglielmelli, E.: Design of a variable impedance differential actuator for wearable robotics applications. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2639–2644

    Google Scholar 

  31. Pratt, G., Williamson, M.: Series elastic actuators. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 399–406 (1995)

    Google Scholar 

  32. Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of Honda humanoid robot. In: Proceedings of the 1998 IEEE International Conference on Robotics and Automation, pp. 1321–1326

    Google Scholar 

  33. Wassink, M., Carloni, R., Stramigioli, S.: Port-Hamiltonian analysis of a novel robotic finger concept for minimal actuation variable impedance grasping. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation, pp. 771–776

    Google Scholar 

  34. Rahman, S.: A novel variable impedance compact compliant series elastic actuator: analysis of design, dynamics, materials and manufacturing. Appl. Mech. Mater. 245, 99–106 (2013)

    Article  Google Scholar 

  35. Carlson, T., Demiris, Y.: Collaborative control for a robotic wheelchair: evaluation of performance, attention and workload. IEEE Trans. Syst. Man Cybern. B 42(3), 876–888 (2012)

    Article  Google Scholar 

  36. Rahman, S.: A novel variable impedance compact compliant series elastic actuator for human-friendly soft robotics applications. In: Proceedings of the 2012 21st IEEE International Symposium on Robot and Human Interactive Communication, pp. 19–24

    Google Scholar 

Download references

Acknowledgements

The author acknowledges the supports that he received from the National University of Singapore (NUS), Singapore in relation to the work presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Mizanoor Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rahman, S.M.M. (2014). Design of a Modular Knee-Ankle-Foot-Orthosis Using Soft Actuator for Gait Rehabilitation. In: Natraj, A., Cameron, S., Melhuish, C., Witkowski, M. (eds) Towards Autonomous Robotic Systems. TAROS 2013. Lecture Notes in Computer Science(), vol 8069. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43645-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43645-5_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43644-8

  • Online ISBN: 978-3-662-43645-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics