Skip to main content

Stretching the Paradigm or Building a New? Development of a Cohesive Language for Vibrational Communication

  • Chapter
  • First Online:
Studying Vibrational Communication

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 3))

Abstract

Before we can recruit the broader community to share our conviction of substrate-borne communication in animals as ancient, important, widely employed in vertebrates, and perhaps exclusively employed in a broad range of arthropod taxa, we first must assess our current status within the animal communication paradigm and plot a course with that focused goal in sight. We must agree on the words we use to unambiguously communicate research findings among ourselves. We can do this rapidly through consensus, or allow terminology and protocols to slowly evolve to cohesion over an extended period of time through inaction. This chapter briefly explores the current position of shared core concepts on vibrational communication within the framework of Thomas Kuhn’s Structure of Scientific Revolutions and suggests that the study of substrate-borne vibrational communication really can be accommodated within the dominant paradigm of animal communication. We require a reinterpretation of what ‘everyone knows to be true’ in some cases where empirical studies now have falsified previous widely held assumptions. A first step might be to develop a concerted, coordinated strategy that is widely employed by those currently studying vibrational communication. The paradigm can be stretched without being replaced, or we can forge a separate paradigm for vibrational communication. It is simply time to collectively decide on a course of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aicher B, Tautz J (1990) Vibrational communication in the fiddler crab, Uca pugilator. I. Signal transmission through the substratum. J Comp Physiol A 166:345–353

    Google Scholar 

  • Anderson CJ (1973) Animals, earthquakes, and eruptions. Field Mus Nat Hist Bull 44:9–11

    Google Scholar 

  • Barth FG (1982) Spiders and vibratory signals: sensory reception and behavioral significance. In: Witt PN, Rovner JS (eds) Spider communication. Princeton University Press, Princeton, pp 67–122

    Google Scholar 

  • Birch MC, Keenlyside JJ (1991) Tapping behavior is a rhythmic communication in the death-watch beetle, Xestobium rufovillosum (Coleoptera: Anobiidae). J Insect Behav 4:257–263

    Google Scholar 

  • Breidbach O (1986) Studies on the stridulation of Hylotrupes bajulus (L.) (Cerambycidae, Coleoptera): communication through support vibration—morphology and mechanics of the signal. Behav Process 12:169–186

    CAS  Google Scholar 

  • Briceno RD, Bonilla F (2009) Substrate vibrations in the scorpion Centruroides margaritatus (Scorpiones: Buthidae) during courtship. Int J Trop Biol Cons 57(Suppl 1):267–274

    Google Scholar 

  • Broad GR, Quicke DLJ (2000) The adaptive significance of host location by vibrational sounding in parasitoid wasps. P Roy Soc Lond B 267:2403–2409

    CAS  Google Scholar 

  • Brownell P, Farley RD (1979a) Detection of vibrations in sand by tarsal sense organs of the nocturnal scorpion, Paruroctonus mesaensis. J Comp Physiol A 131:23–30

    Google Scholar 

  • Brownell P, Farley RD (1979b) Orientation to vibrations in sand by the nocturnal scorpion Paruroctonus mesaensis: mechanism of target localization. J Comp Physiol A 131:31–38

    Google Scholar 

  • Brownell P, Farley RD (1979c) Prey-localizing behaviour of the nocturnal desert scorpion, Paruroctonus mesaensis: orientation to substrate vibrations. Anim Behav 27:185–193

    Google Scholar 

  • Brownell PH (1977) Compressional and surface waves in sand used by desert scorpions to locate prey. Science 197:479–482

    CAS  PubMed  Google Scholar 

  • Caldwell MB, Johnston GR, McDaniel JG, Warkentin KM (2010) Vibrational signaling in the agonistic interactions of red-eyed treefrogs. Curr Biol 20:1012–1017

    CAS  PubMed  Google Scholar 

  • Chuche J, Thiery D, Mazzoni V (2011) Do Scapoideus titanus (Hemiptera: Cicadellidae) nymphs use vibrational communication? Naturwissenschaften 98:639–642

    CAS  PubMed  Google Scholar 

  • Claridge MF (1985) Acoustic signals in the Homoptera: behavior, taxonomy, and evolution. Annu Rev Entomol 30:297–317

    Google Scholar 

  • Claridge MF, Morgan JC, Moulds MS (1999) Substrate-transmitted acoustic signals of the primitive cicada, Tettigarcta crinita Distant (Hemiptera Cicadoidea, Tettigarctidae). J Nat Hist 33:1831–1834

    Google Scholar 

  • Clayton D (2005) Substrate (acoustic/vibrational) communication and ecology of the ghost crab Ocypode jousseaumei (Brachyura: Ocypodidae). Mar Freshw Behav Phy 38:53–70

    Google Scholar 

  • Cocroft RB, Rodríguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55:323–334

    Google Scholar 

  • De Groot M, Čokl A, Virant-Doberlet M (2011) Search behavior of two hemipteran species using vibrational communication. Cent Eur J Biol 6:756–769

    Google Scholar 

  • De Souza LR, Kasumovic MM, Judge KA (2011) Communicating male size by tremulatory vibration in a Columbian rainforest katydid, Gnathoclita sodalist (Orthoptera: Tettigoniidae). Behaviour 148:341–357

    Google Scholar 

  • Devetak D (1998) Detection of substrate vibration in Neuropteroidea: a review. Acta Zool Fenn 209:87–94

    Google Scholar 

  • Devetak D, Amon T (1997) Substrate vibration sensitivity of the leg scolopidial organs in the green lacewing, Chrysoperla carnea. J Insect Physiol 43:433–437

    CAS  Google Scholar 

  • Devetak D, Pabst MA, Delakorda SL (2004) Leg chordotonal organs and campaniform sensilla in Chrysoperla Steinmann 1964 (Neuroptera): structure and function. Denisia 13:163–171

    Google Scholar 

  • Dierkes S, Barth FG (1995) Mechanism of signal production in the vibratory communication of the wandering spider Cupiennius getazi (Arachnida, Araneae). J Comp Physiol A 176:31–44

    Google Scholar 

  • Drosopoulos S, Claridge MF (eds) (2006) Insect sounds and communication: physiology, behaviour, ecology and evolution. Taylor & Francis, Boca Raton

    Google Scholar 

  • Eberhard MJB, Picker MD (2008) Vibrational communication in two sympatric species of Mantophasmatodea (Heelwalkers). J Insect Behav 21:240–257

    Google Scholar 

  • Eberhard MJB, Lang D, Metscher B, Pass G, Picker MD, Wolf H (2010) Structure and sensory physiology of the leg scolopidial organs in Mantophasmatodea and their role in vibrational communication. Arthropod Struct Dev 39:230–241

    CAS  PubMed  Google Scholar 

  • Elias DO, Mason AC (2010) Signaling in variable environments: substrate-borne signaling mechanisms and communication behavior in spiders. In: O’Connell-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Transworld, Kerala, pp 25–46

    Google Scholar 

  • Emerson AE, Simpson RC (1929) Apparatus for the detection of substratum communication among termites. Science 69:648–649

    CAS  PubMed  Google Scholar 

  • Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M, Mazzoni V (2011) Inter-plant vibrational communication in a leafhopper insect. PLoS ONE 6:e19692

    CAS  PubMed Central  PubMed  Google Scholar 

  • Esch H (1961) Űber die Schallerzeugung beim Webetanz der Honigbiene. Z Vergl Physiol 45:1–11

    Google Scholar 

  • Field LH, Bailey WJ (1997) Sound production in primitive Orthoptera from western Australia: sounds used in defence and social communication in Ametrus sp. and Hadrogryllacris sp. (Gryllacrididae: Orthoptera). J Nat Hist 31:1127–1141

    Google Scholar 

  • Fletcher LE, Yack JE, Fitzgerald TD, Hoy RR (2006) Vibrational communication in the cherry leaf roller caterpillar Caloptilia serotinella (Gracillariodea: Gracillariidae). J Insect Behav 19:1–18

    Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. University of Chicago Press, Chicago

    Google Scholar 

  • Gibson JS, Uetz GW (2008) Seismic communication and mate choice in wolf spiders: components of male seismic signals and mating success. Anim Behav 75:1253–1262

    Google Scholar 

  • Gogala M (1985) Vibrational communication in insects (biophysical and behavioural aspects). In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Paul Parey, Berlin, pp 117–126

    Google Scholar 

  • Gogala M, Čokl A, Drašlar K, Blaževič A (1974) Substrate-borne sound communication in Cydnidae (Heteroptera). J Comp Physiol 94:25–31

    Google Scholar 

  • Goulson D, Birch MC, Wyatt TD (1994) Mate location in the deathwatch beetle, Xestobium rufovillosum De Geer (Anobiidae): orientation to substrate vibrations. Anim Behav 47:899–907

    Google Scholar 

  • Hebets EA, Uetz GW (1999) Female responses to isolated signals from multimodal male courtship displays in the wolf spider genus Schizocosa (Araneae: Lycosidae). Anim Behav 57:865–872

    PubMed  Google Scholar 

  • Henry CS (1979) Acoustical communication during courtship and mating in the green lacewing Chrysopa carnea (Neuroptera: Chrysopidae). Ann Entomol Soc Am 72:68–79

    Google Scholar 

  • Heth G, Frankenberg E, Raz A, Nevo E (1987) Vibrational communication in subterranean mole rats (Spalax ehrenbergi). Behav Ecol Sociobiol 21:31–33

    Google Scholar 

  • Hill PSM (2008) Vibrational communication in animals. Harvard University Press, Cambridge

    Google Scholar 

  • Hill PSM (2009) How do animals use substrate-borne vibrations as an information source? Naturwissenschaften 96:1355–1371

    CAS  PubMed  Google Scholar 

  • Hill PSM (2010) Introduction. In: O’Connell-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Transworld, Kerala, pp 1–8

    Google Scholar 

  • Hill PSM, Shadley JR (2001) Talking back: sending soil vibration signals to lekking prairie mole cricket males. Amer Zool 41:1200–1214

    Google Scholar 

  • Hoch H, Deckert J, Wessel A (2006) Vibrational signalling in a Gondwanan relict insect (Hemiptera: Coleorrhyncha: Peloridiidae). Biol Lett 2:222–224

    PubMed Central  PubMed  Google Scholar 

  • Howse PE (1964) The significance of sound produced by the termite Zootermopsis angusticollis Hagen. Anim Behav 12:284–300

    Google Scholar 

  • Ichikawa T (1976) Mutual communication by substrate vibrations in the mating behavior of planthoppers (Homoptera: Delphacidae). Appl Entomol Zool 11:8–21

    Google Scholar 

  • Ishay J, Landau EM (1972) Vespa larvae send out rhythmic hunger signals. Nature 237:286–287

    CAS  PubMed  Google Scholar 

  • Ishay J, Schwartz A (1973) Acoustical communication between the members of the oriental hornet (Vespa orientalis) colony. J Acoust Soc Am 53:640–649

    Google Scholar 

  • Ishay J, Motro A, Gitter S, Brown MB (1974) Rhythms in acoustical communication by the oriental hornet, Vespa orientalis. Anim Behav 22:741–744

    Google Scholar 

  • Kalmring K, Elsner N (eds) (1985) Acoustic and vibrational communication in insects. Paul Parey, Berlin

    Google Scholar 

  • Kanmiya K (2006a) Communication by vibratory signals in Diptera. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. Taylor & Francis, Boca Raton, pp 381–396

    Google Scholar 

  • Kanmiya K (2006b) Mating behavior and vibratory signals in whiteflies (Hemiptera: Aleyroididae). In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. Taylor & Francis, Boca Raton, pp 365–379

    Google Scholar 

  • Kasper J, Hirschberger P (2005) Stridulation in Aphodius dung beetles: songs and morphology of stridulatory organs in North American Aphodius species (Scarabaeidae). J Nat Hist 39:91–99

    Google Scholar 

  • Kirchner WH (1997) Acoustical communication in social insects. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhäuser Verlag, Basel, pp 273–300

    Google Scholar 

  • Kočárek P (2010) Substrate-borne vibrations as a component of intraspecific communication in the groundhopper Tetrix ceperoi. J Insect Behav 23:348–363

    Google Scholar 

  • Kojima W, Takanashi T, Ishikawa Y (2011) Vibratory communication in the soil: pupal signals deter larval intrusion in a group-living beetle Trypoxylus dichotoma. Behav Ecol Sociobiol 66:171–179

    Google Scholar 

  • Kuhn TS (1996) The structure of scientific revolutions, 3rd edn. University of Chicago Press, Chicago

    Google Scholar 

  • Lakes-Harlan R, Strauβ J (2006) Developmental constraint of insect audition. Front Zool 3:20. doi:10.1186/1742-9994-3-20

    PubMed Central  PubMed  Google Scholar 

  • Lewis ER (1984) Inertial motion sensors. In: Bolis L, Keynes RD, Maddrell SHP (eds) Comparative physiology of sensory systems. Cambridge University Press, Cambridge, pp 587–610

    Google Scholar 

  • Lewis LA, Schneider SS (2000) The modulation of worker behavior by the vibration signal during house hunting in swarms of the honeybee, Apis mellifera. Behav Ecol Sociobiol 48:154–164

    Google Scholar 

  • Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin, pp 332–353

    Google Scholar 

  • Masters WM, Tautz J, Fletcher NH, Markl H (1983) Body vibration and sound production in an insect (Atta sexdens) without specialized radiating structures. J Comp Physiol A 150:239–249

    Google Scholar 

  • McNett GD, Miles RN, Homentcovschi D, Cocroft RB (2006) A method for two-dimensional characterization of animal vibrational signals transmitted along plant stems. J Comp Physiol A 192:1245–1251

    Google Scholar 

  • McVean A, Field LH (1996) Communication by substratum vibration in the New Zealand tree weta, Hemideina femorata (Stenopelmatidae: Orthoptera). J Zool 239:101–122

    Google Scholar 

  • Mello FAG, Dos Reis JC (1994) Substrate drumming and wing stridulation performed during courtship by a new Brazilian cricket (Orthoptera: Grylloidea: Phalangopsidae). J Orthopt Res 2:21–24

    Google Scholar 

  • Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281

    Google Scholar 

  • Michelsen A, Kirchner WH, Andersen BB, Lindauer M (1986) The tooting and quacking vibration signals of honeybee queens: a quantitative analysis. J Comp Physiol A 158:605–611

    Google Scholar 

  • Milum VG (1955) Honey bee communication. Am Bee J 95:97–104

    Google Scholar 

  • Morris GK (1980) Calling display and mating behaviour of Copiphora rhinoceros Pictet (Orthoptera: Tettigoniidae). Anim Behav 28:42–51

    Google Scholar 

  • Nieh JC (1993) The stop signal of honey bees: reconsidering its message. Behav Ecol Sociobiol 33:51–56

    Google Scholar 

  • O’Connell-Rodwell CE (ed) (2010) The use of vibrations in communication: properties, mechanisms and function across taxa. Transworld, Kerala

    Google Scholar 

  • Ossiannilsson F (1949) Insect drummers. A study on the morphology and function of the sound-producing organ of Swedish Homoptera Auchenorrhyncha with notes on their sound production. Opuscula Entomol Suppl X:1–146

    Google Scholar 

  • Pearman JV (1928) On sound production in the Psocoptera and on a presumed stridulatory organ. Entomol Monog Mag 64(Third series v14):179-186

    Google Scholar 

  • Pratte M, Jeanne RL (1984) Antennal drumming behavior in Polistes wasps (Hymenoptera: Vespidae). Z Tierpsychol 66:177–188

    Google Scholar 

  • Quirici V, Costa FG (2005) Seismic communication during courtship in two burrowing tarantula spiders: an experimental study on Eupalaestrus weijenberghi and Acanthoscurria suina. J Arachnol 33:159–166

    Google Scholar 

  • Rado R, Levi N, Hauser H, Witscher J, Adler N, Intrator N, Wollberg A, Terkell J (1987) Seismic signalling as a means of communication in a subterranean mammal. Anim Behav 35:1249–1251

    Google Scholar 

  • Randall JA (2001) Evolution and function of drumming as communication in mammals. Am Zool 41:1143–1156

    Google Scholar 

  • Randall JA (2010) Drummers and stompers: vibrational communication in mammals. In: O’Connell-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Transworld, Kerala, pp 99–120

    Google Scholar 

  • Roces F, Tautz J, Hölldobler B (1993) Stridulation in leaf-cutting ants: short-range recruitment through plant-borne vibrations. Naturwissenschaften 80:521–524

    Google Scholar 

  • Rovner JS (1975) Sound production by Nearctic wolf spiders: a substratum-coupled stridulatory mechanism. Science 190:1309–1310

    Google Scholar 

  • Rovner JS (1980) Vibration in Heteropoda venatoria (Sparassidae): a third method of sound production in spiders. J Arachnol 8:193–200

    Google Scholar 

  • Rovner JS, Barth FG (1981) Vibratory communication through living plants by a tropical wandering spider. Science 214:464–466

    CAS  PubMed  Google Scholar 

  • Rupprecht R (1974) Vibrationssignale bei der Paarung von Panorpa (Mecoptera/Insecta). Experientia 30:340–341

    CAS  PubMed  Google Scholar 

  • Rupprecht R (1975) Die Kommunikation von Sialis (Megaloptera) durch Vibrationsignale. J Insect Physiol 21:305–320

    Google Scholar 

  • Salmon M, Horch KW (1972) Acoustic signaling and detection by semiterrestrial crabs of the family Ocypodidae. In: Winn HE, Olla BL (eds) Behavior of marine animals. Plenum Press, New York, pp 60–96

    Google Scholar 

  • Sandeman DC, Tautz J, Lindauer M (1996) Transmission of vibration across honeycombs and its detection by bee leg receptors. J Exp Biol 199:2585–2594

    PubMed  Google Scholar 

  • Schwartzkopff J (1974) Mechanoreception. In: Rockstein M (ed) The physiology of Insecta, vol 2. Academic Press, New York, pp 273–352

    Google Scholar 

  • Seeley TD (1992) The tremble dance of the honey bee: message and meanings. Behav Ecol Sociobiol 31:375–383

    Google Scholar 

  • Seeley TD, Weidenműller A, Kűhnholz S (1998) The shaking signal of the honey bee informs workers to prepare for greater activity. Ethology 104:10–26

    Google Scholar 

  • Shaw KC, Carlson OV (1979) Morphology of the tymbal organ of the potato leafhopper Empoasca fabae Harris (Homoptera: Cicadellidae). J Kansas Entomol Soc 52:701–711

    Google Scholar 

  • Shaw KC, Vargo A, Carlson OV (1974) Sounds and associated behavior of some species of Empoasca (Homoptera: Cicadellidae). J Kansas Entomol Soc 47:284–307

    Google Scholar 

  • Snarr KA (2005) Seismic activity response as observed in mantled howlers (Alouatta palliata), Cuero y Salado Wildlife Refuge, Honduras. Primates 46:281–285

    PubMed  Google Scholar 

  • Stewart KW (2008) Vibrational communication. In: Capinera JL (ed) Encyclopedia of Entomology, 2nd edn. Springer, London, pp 4103–4105

    Google Scholar 

  • Strauβ J, Lakes-Harlan R (2008a) Neuroanatomy and physiology of the complex tibial organ of an atympanate Ensiferan, Ametrus tibialis (Brunner von Wattenwyl, 1888) (Gryllacrididae, Orthoptera) and evolutionary implications. Brain Behav Evolut 71:167–180

    Google Scholar 

  • Strauβ J, Lakes-Harlan R (2008b) Neuroanatomy of the complex tibial organ of Stenopelmatus (Orthoptera: Ensifera: Stenopelmatidae). J Comp Neurol 511:81–91

    Google Scholar 

  • Strauβ J, Lakes-Harlan R (2009) The evolutionary origin of auditory receptors in Tettigonioidea: the complex tibial organ of Schizodactylidae. Naturwissenschaften 96:143–146

    Google Scholar 

  • Strauβ J, Lakes-Harlan R (2010) Neuroanatomy of the complex tibial organ in the splay-footed cricket Comicus calcaris Irish 1986 (Orthoptera: Ensifera: Schizodactylidae). J Comp Neurol 518:4567–4580

    Google Scholar 

  • Strauβ J, Lakes-Harlan R (2013) Sensory neuroanatomy of stick insects highlights the evolutionary diversity of the orthopteroid subgenual organ complex. J Comp Neurol doi: 10.1002/cne.23378. [Epub ahead of print]

    Google Scholar 

  • Stritih N, Čokl A (2012) Mating behavior and vibratory signalling in non-hearing cave crickets reflect primitive communication of Ensifera. PLoS ONE 7:e47646

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tishechkin DY (2006) Vibratory communication in Psylloidea (Hemiptera). In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. Taylor & Francis, Boca Raton, pp 357–363

    Google Scholar 

  • Theiβ J (1982) Generation and radiation of sound by stridulating water insects as exemplified by the Corixids. Behav Ecol Sociobiol 10:225–235

    Google Scholar 

  • Tributsch H (1982) When the snakes awake: animals and earthquake prediction. MIT, Cambridge

    Google Scholar 

  • Uetz GW, Stratton GE (1982) Acoustic communication and reproductive isolation in spiders. In: Witt PN, Rovner JS (eds) Spider communication. Princeton University Press, Princeton, pp 123–159

    Google Scholar 

  • Virant-Doberlet M, Čokl A (2004) Vibrational communication in insects. Neotrop Entomol 33:121–134

    Google Scholar 

  • Virant-Doberlet M, King RA, Polajnar J, Symondson WOC (2011) Molecular diagnostics reveal spiders that exploit prey vibrational signals used in sexual communication. Mol Ecol 20:2204–2216

    PubMed  Google Scholar 

  • Weismann DB (2001) Communication and reproductive behavior in North American Jerusalem crickets (Stenopelmatus) (Orthoptera: Stenopelmatidae). In: Field LH (ed) The biology of wetas, king crickets and their allies. CAB International, Wallingford, pp 351–375

    Google Scholar 

  • Wessel A (2006) Stridulation in the Coleoptera—an overview. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. Taylor & Francis, Boca Raton, pp 397–403

    Google Scholar 

  • Wignall AE, Herberstein ME (2013) The influence of vibratory courtship on female mating behavior in orb-web spiders (Argiope keyserlingi, Karsch 1878). PLoS ONE 8:e53057

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yack JE, Smith ML, Weatherhead PJ (2001) Caterpillar talk: acoustically mediated territoriality in larval Lepidoptera. P Nat Acad Sci USA 98:11371–11375

    CAS  Google Scholar 

  • Zeigler DD, Stewart KW (1977) Drumming behavior of eleven Nearctic stonefly (Plecoptera) species. Ann Entomol Soc Am 70:495–505

    Google Scholar 

Download references

Acknowledgments

I thank Hannelore Hoch and Andreas Wessel for the invitation to speak at the Entomologentagung of the Deutschen Gesellschaft fűr allgemeine und angewandte Entomologie (DGaaE) in 2011 and support to travel to Berlin. I also thank Rex Cocroft, Matija Gogala, and Andreas for inviting me to contribute a chapter and to serve as co-editor of this volume. As always, I thank John Shadley for guiding my first forays into the study of vibrational communication and for his teaching, mentorship, and friendship over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peggy S. M. Hill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hill, P.S.M. (2014). Stretching the Paradigm or Building a New? Development of a Cohesive Language for Vibrational Communication. In: Cocroft, R., Gogala, M., Hill, P., Wessel, A. (eds) Studying Vibrational Communication. Animal Signals and Communication, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43607-3_2

Download citation

Publish with us

Policies and ethics