Skip to main content

The Role of Wave and Substrate Heterogeneity in Vibratory Communication: Practical Issues in Studying the Effect of Vibratory Environments in Communication

  • Chapter
  • First Online:
Studying Vibrational Communication

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 3))

Abstract

The substrate-borne sensory modality is inherently more complex than other modalities mainly due to the availability of many possible signaling channels, each with potentially distinct physical properties that may affect transmission between senders and receivers. In addition, in any given signaling channel, multiple wave types and patterns of propagation are possible leading to a combinatorial expansion of signal parameters that must be considered in analyses of vibratory sensory ecology. In the context of substrate-borne communication, animals have adapted to variation in signaling environments in a variety of ways including the evolution of distinct signaling strategies, multiple signal production mechanisms, and context-dependent behavior. This rich diversity is a subject of growing interest, but also presents major experimental challenges for scientists. In this review, we survey the literature of vibratory sensory ecology and discuss issues relating directly to the measurement of transmission characteristics in substrates and the use of artificial and natural substrates in behavioral experiments. We suggest that the vibratory sensory modality is an ideal study system for questions on sensory ecology and urge further research integrating mathematical models, carefully measured behavioral recordings, and comparative analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achenbach JD (1973) Wave propagation in elastic solids. North Holland Pub. Co., Amsterdam

    Google Scholar 

  • Aicher B, Tautz J (1990) Vibrational communication in the Fiddler Crab, Uca pugilator.1. Signal transmission through the substratum. J Comp Physiol A 166:345–353

    Google Scholar 

  • Aicher B, Markl H, Masters WM, Kirschenlohr HL (1983) Vibration transmission through the walking legs of the Fiddler Crab, Uca pugilator (Brachyura, Ocypodidae) as measured by laser doppler vibrometry. J Comp Physiol 150:483–491

    Google Scholar 

  • Alexander RD (1962) Evolutionary change in cricket acoustical communication. Evolution 16:443–467

    Google Scholar 

  • Arak A, Eiriksson T (1992) Choice of singing sites by male bush-crickets (Tettigonia viridissima) in relation to signal propagation. Behav Ecol Sociobiol 30:365–372

    Google Scholar 

  • Arak A, Enquist M (1993) Hidden preferences and the evolution of signals. Philos T Roy Soc B 340:207–213

    Google Scholar 

  • Archer SN, Djamgoz MBA, Loew ER, Partridge JC, Vallerga S (eds) (1999) Adaptive mechanisms in the ecology of vision. Kluwer Academic, Dordrecht

    Google Scholar 

  • Arnqvist G (2006) Sensory exploitation and sexual conflict. Philos T Roy Soc B 361:375–386

    Google Scholar 

  • Arnqvist G, Rowe L (2005) Sexual conflict. Princeton University Press, Princeton

    Google Scholar 

  • Aylor D (1972a) Noise-reduction by vegetation and ground. J Acoust Soc Am 51:197–205

    Google Scholar 

  • Aylor D (1972b) Sound transmission through vegetation in relation to leaf area density, leaf width, and breadth of canopy. J Acoust Soc Am 51:411–414

    Google Scholar 

  • Barth FG (1998) The vibrational sense of spiders. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer, New York, pp 228–278

    Google Scholar 

  • Barth FG (2002) A spider’s world: senses and behavior. Springer, Berlin

    Google Scholar 

  • Barth FG, Schmid A (eds) (2001) Ecology of sensing. Springer, Berlin

    Google Scholar 

  • Barth FG, Bleckmann H, Bohnenberger J, Seyfarth EA (1988) Spiders of the genus Cupiennius Simon 1891 (Araneae, Ctenidae).2. On the vibratory environment of a wandering spider. Oecologia 77:194–201

    Google Scholar 

  • Bell WJ, Cardé R (eds) (1984) Chemical ecology of insects. Sinauer Associates, Sunderland

    Google Scholar 

  • Bennet-Clark HC (1987) The tuned singing burrow of mole crickets. J Exp Biol 128:383–409

    Google Scholar 

  • Bernays EA, Wcislo WT (1994) Sensory capabilities, information-processing, and resource specialization. Q Rev Biol 69:187–204

    Google Scholar 

  • Bleckmann H, Barth FG (1984) Sensory ecology of a semi-aquatic spider (Dolomedes triton) II. The release of predatory behavior by water surface waves. Behav Ecol Sociobiol 14:303–312

    Google Scholar 

  • Bleckmann H, Rovner JS (1984) Sensory ecology of a semi-aquatic spider (Dolomedes triton). Behav Ecol Sociobiol 14:297–301

    Google Scholar 

  • Boake CRB (1991) Coevolution of senders and receivers of sexual signals: genetic coupling and genetic correlations. TREE 6:225–227

    CAS  PubMed  Google Scholar 

  • Boughman JW (2002) How sensory drive can promote speciation. TREE 17:571–577

    Google Scholar 

  • Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer Assoc, Sunderland

    Google Scholar 

  • Brownell P, Farley RD (1979) Orientation to vibrations in sand by the nocturnal scorpion Paruroctonus mesaensis—mechanism of target localization. J Comp Physiol 131:31–38

    Google Scholar 

  • Brownell PH (1977) Compressional and surface-waves in sand used by desert scorpions to locate prey. Science 197:479–482

    CAS  PubMed  Google Scholar 

  • Brownell PH, Van Hemmen JL (2000) Vibration sensitivity and prey-localizing behaviour of sand scorpions. Am Zool 40:955–956

    Google Scholar 

  • Butlin RK, Ritchie MG (1989) Genetic coupling in mate recognition systems: what is the evidence? Biol J Linn Soc 37:237–246

    Google Scholar 

  • Byers J, Hebets E, Podos J (2010) Female mate choice based upon male motor performance. Anim Behav 79:771–778

    Google Scholar 

  • Cady AB, Delaney JK, Uetz GW (2011) Contrasting energetic costs of courtship signaling in two wolf spiders having divergent courtship behaviors. J Arachnol 39:161–165

    Google Scholar 

  • Cardé R, Millar GJ (eds) (2004) Advances in insect chemical ecology. Cambridge University, Cambridge

    Google Scholar 

  • Casas J, Bacher S, Tautz J, Meyhöfer R, Pierre D (1998) Leaf vibrations and air movements in a leafminer–parasitoid system. Biol Control 11:147–153

    Google Scholar 

  • Casas J, Magal C, Sueur J (2007) Dispersive and non-dispersive waves through plants: implications for arthropod vibratory communication. P Roy Soc B Bio 274:1087–1092

    Google Scholar 

  • Chapman RF (1998) The insects: structure and function. Cambridge University, Cambridge

    Google Scholar 

  • Chittka L, Thomson JD (2001) Cognitive ecology of pollination: animal behavior and floral evolution. Cambridge University, Cambridge

    Google Scholar 

  • Clark CJ, Elias DO, Prum RO (2011) Aeroelastic flutter produces hummingbird feather songs. Science 333:1430–1433

    CAS  PubMed  Google Scholar 

  • Cocroft RB (2001) Vibrational communication and the ecology of group-living, herbivorous insects. Am Zool 41:1215–1221

    Google Scholar 

  • Cocroft RB (2011) The public world of insect vibrational communication. Mol Ecol 20:2041–2043

    PubMed  Google Scholar 

  • Cocroft RB, Rodriguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55:323–334

    Google Scholar 

  • Cocroft RB, Tieu TD, Hoy RR, Miles RN (2000) Directionality in the mechanical response to substrate vibration in a treehopper (Hemiptera: Membracidae: Umbonia crassicornis). J Comp Phys A 186:695–705

    CAS  Google Scholar 

  • Cocroft RB, Shugart HJ, Konrad KT, Tibbs K (2006) Variation in plant substrates and its consequences for insect vibrational communication. Ethology 112:779–789

    Google Scholar 

  • Cocroft RB, Rodriguez RL, Hunt RE (2008) Host shifts, the evolution of communication and speciation in the Enchenopa binotata species complex of treehoppers. In: Tilmon KJ (ed) Speciation, specialization and radiation: the evolutionary biology of insect and plant interactions. University of California Press, Berkeley, pp 88–100

    Google Scholar 

  • Cocroft RB, Rodriguez RL, Hunt RE (2010) Host shifts and signal divergence: mating signals covary with host use in a complex of specialized plant-feeding insects. Biol J Linn Soc 99:60–72

    Google Scholar 

  • Čokl A (2008) Stink bug interaction with host plants during communication. J Insect Physi 54:1113–1124

    Google Scholar 

  • Čokl A, Virant-Doberlet M (2003) Communication with substrate-borne signals in small plant-dwelling insects. Annu Rev Entomol 48:29–50

    PubMed  Google Scholar 

  • Čokl A, Virant-Doberlet M, Stritih N (2000) The structure and function of songs emitted by southern green stink bugs from Brazil, Florida, Italy and Slovenia. Physiol Entomol 25:196–205

    Google Scholar 

  • Čokl A, Presern J, Virant-Doberlet M, Bagwell GJ, Millar JG (2004) Vibratory signals of the harlequin bug and their transmission through plants. Physiol Entomol 29:372–380

    Google Scholar 

  • Čokl A, Zorovic M, Zunic A, Virant-Doberlet M (2005) Tuning of host plants with vibratory songs of Nezara viridula L (Heteroptera: Pentatomidae). J Exp Biol 208:1481–1488

    PubMed  Google Scholar 

  • Čokl A, Nardi C, Bento JMS, Hirose E, Panizzi AR (2006) Transmission of stridulatory signals of the burrower bugs, Scaptocoris castanea and Scaptocoris carvalhoi (Heteroptera : Cydnidae) through the soil and soybean. Physiol Entomol 31:371–381

    Google Scholar 

  • Čokl A, Zorovic M, Millar JG (2007) Vibrational communication along plants by the stink bugs Nezara viridula and Murgantia histrionica. Behav Process 75:40–54

    Google Scholar 

  • Čokl A, Zunic A, Millar JG (2009) Transmission of Podisus maculiventris tremulatory signals through plants. Centr Eur J Biol 4:585–594

    Google Scholar 

  • Cremer L, Heckl M, Ungar EE (1973) Structure-borne sound. Springer, Berlin

    Google Scholar 

  • Dangles O, Irschick D, Chittka L, Casas J (2009) Variability in sensory ecology: expanding the bridge between physiology and evolutionary biology. Q Rev Biol 84:51–74

    PubMed  Google Scholar 

  • Daws AG, Bennet-Clark HC, Fletcher NH (1996) The mechanism of tuning of the mole cricket singing burrow. Bioacoustics 7:81–117

    Google Scholar 

  • Delaney KJ, Roberts JA, Uetz GW (2007) Male signaling behavior and sexual selection in a wolf spider (Araneae: Lycosidae): a test for dual functions. Behav Ecol Sociobiol 62:67–75

    Google Scholar 

  • Devetak D, Mencinger-Vracko B, Devetak M, Marhl M, Spernjak A (2007) Sand as a medium for transmission of vibratory signals of prey in antlions Euroleon nostras (Neuroptera: Myrmeleontidae). Physiol Entomol 32:268–274

    Google Scholar 

  • Dicke M, Takken W (eds) (2006) Chemical ecology: from gene to ecosystem. Springer, Dordrecht

    Google Scholar 

  • Dierkes S, Barth FG (1995) Mechanism of signal production in the vibratory communication of the wandering spider Cupiennius getazi (Arachnida, Araneae). J Comp Physiol A 176:31–44

    Google Scholar 

  • Dukas R (ed) (1998) Cognitive ecology: the evolutionary ecology of information processing and decision making. University of Chicago Press, Chicago

    Google Scholar 

  • Dusenbery DB (1992) Sensory ecology. W. H. Freeman, New York

    Google Scholar 

  • Elias DO, Mason AC (2011) Signaling in variable environments: substrate-borne signaling mechanisms and communication behavior in spiders. In: O’Connell-Rodwell C (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Research Signpost, Kerala

    Google Scholar 

  • Elias DO, Mason AC, Maddison WP, Hoy RR (2003) Seismic signals in a courting male jumping spider (Araneae: Salticidae). J Exp Biol 206:4029–4039

    PubMed  Google Scholar 

  • Elias DO, Mason AC, Hoy RR (2004) The effect of substrate on the efficacy of seismic courtship signal transmission in the jumping spider Habronattus dossenus (Araneae: Salticidae). J Exp Biol 207:4105–4110

    PubMed  Google Scholar 

  • Elias DO, Hebets EA, Hoy RR, Maddison WP, Mason AC (2006a) Regional seismic song differences in sky island populations of the jumping spider Habronattus pugillis Griswold (Araneae, Salticidae). J Arachnol 34:545–556

    Google Scholar 

  • Elias DO, Lee N, Hebets EA, Mason AC (2006b) Seismic signal production in a wolf spider: parallel versus serial multi-component signals. J Exp Biol 209:1074–1084

    PubMed  Google Scholar 

  • Elias DO, Kasumovic MM, Punzalan D, Andrade MCB, Mason AC (2008) Assessment during aggressive contests between male jumping spiders. Anim Behav 76:901–910

    PubMed Central  PubMed  Google Scholar 

  • Elias DO, Mason AC, Hebets EA (2010a) A signal-substrate match in the substrate-borne component of a multimodal courtship display. Curr Zool 56:370–378

    Google Scholar 

  • Elias DO, Sivalinghem S, Mason AC, Andrade MCB, Kasumovic MM (2010b) Vibratory communication in the jumping spider Phidippus clarus: substrate-borne courtship signals are important for male mating success. Ethology 116:990–998

    Google Scholar 

  • Elias DO, Maddison WP, Peckmezian C, Girard MB, Mason AC (2012) Orchestrating the score: complex multimodal courtship in the Habronattus coecatus group of Habronattus jumping spiders (Araneae: Salticidae). Biol J Linn Soc 105:522–547

    Google Scholar 

  • Endler JA (1992) Signals, signal conditions, and the direction of evolution. Am Nat 139:S125–S153

    Google Scholar 

  • Endler JA (1993) Some general comments on the evolution and design of animal communication systems. Philos T Roy Soc B 340:215–225

    CAS  Google Scholar 

  • Endler JA, Basolo A (1998) Sensory ecology, receiver biases and sexual selection. TREE 13:415–420

    CAS  PubMed  Google Scholar 

  • Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M, Mazzoni V (2011) Inter-plant vibrational communication in a leafhopper insect. PLoS ONE 6:6

    Google Scholar 

  • Evans TA, Lai JCS, Toledano E, McDowall L, Rakotonarivo S, Lenz M (2005) Termites assess wood size by using vibration signals. P Natl Acad Sci USA 102:3732–3737

    CAS  Google Scholar 

  • Evans TA, Inta R, Lai JCS, Lenz M (2007) Foraging vibration signals attract foragers and identify food size in the drywood termite, Cryptotermes secundus. Insect Soc 54:374–382

    Google Scholar 

  • Evans TA, Inta R, Lai JCS, Prueger S, Foo NW, Fu EW, Lenz M (2009) Termites eavesdrop to avoid competitors. P Roy Soc B Bio 276:4035–4041

    Google Scholar 

  • Fertin A, Casas J (2007) Orientation towards prey in antlions: efficient use of wave propagation in sand. J Exp Biol 210:3337–3343

    PubMed  Google Scholar 

  • Field LH, Bailey WJ (1997) Sound production in primitive Orthoptera from Western Australia: sounds used in defence and social communication in Ametrus sp. and Hadrogryllacris sp. (Gryllacrididae: Orthoptera). J Nat Hist 31:1127–1141

    Google Scholar 

  • Fischer S, Samietz J, Dorn S (2003) Efficiency of vibrational sounding in parasitoid host location depends on substrate density. J Comp Physiol A 189:723–730

    CAS  Google Scholar 

  • Fleishman LJ (1988) Sensory influences on physical design of a visual display. Anim Behav 36:1420–1424

    Google Scholar 

  • Forrest TG (1982) Acoustic communication and baffling behaviors of crickets. Fla Entomol 65:33–44

    Google Scholar 

  • Frohlich C, Buskirk RE (1982) Transmission and attenuation of vibration in orb spider webs. J Theor Biol 95:13–36

    Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans. University of Chicago Press, Chicago London

    Google Scholar 

  • Gibson JS, Uetz GW (2008) Seismic communication and mate choice in wolf spiders: components of male seismic signals and mating success. Anim Behav 75:1253–1262

    Google Scholar 

  • Gogala M (1985) Vibrational songs of land bugs and their production. In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Paul Parey, Berlin Hamburg, pp 143–150

    Google Scholar 

  • Gordon SD, Uetz GW (2011) Multimodal communication of wolf spiders on different substrates: evidence for behavioural plasticity. Anim Behav 81:367–375

    Google Scholar 

  • Greenfield M (2002) Signalers and receivers: mechanisms and evolution of arthropod communication. Oxford University Press, Oxford

    Google Scholar 

  • Hebets EA (2008) Seismic signal dominance in the multimodal courtship display of the wolf spider Schizocosa stridulans Stratton 1991. Behav Ecol 19:1250–1257

    PubMed Central  PubMed  Google Scholar 

  • Hebets EA, Stratton GE, Miller GL (1996) Habitat and courtship behavior of the wolf spider Schizocosa retrorsa (Banks) (Araneae, Lycosidae). J Arachnol 24:141–147

    Google Scholar 

  • Hebets EA, Elias DO, Mason AC, Miller GL, Stratton GE (2008) Substrate-dependent signalling success in the wolf spider, Schizocosa retrorsa. Anim Behav 75:605–615

    Google Scholar 

  • Henry CS (1994) Singing and cryptic speciation in insects. TREE 9:388–392

    CAS  PubMed  Google Scholar 

  • Henry CS, Wells MLM (2004) Adaptation or random change? The evolutionary response of songs to substrate properties in lacewings (Neuroptera: Chrysopidae: Chrysoperla). Anim Behav 68:879–895

    Google Scholar 

  • Henry CS, Wells MM (2010) Acoustic niche partitioning in two cryptic sibling species of Chrysoperla green lacewings that must duet before mating. Anim Behav 80:991–1003

    Google Scholar 

  • Henry CS, Wells MM, Pupedis RJ (1993) Hidden taxonomic diversity within Crysoperla plorabunda (Neuroptera, Chrysopidae): two new species based on courtship songs. Ann Entomol Soc Am 86:1–13

    Google Scholar 

  • Henry CS, Brooks SJ, Johnson JB, Duelli P (1999a) Revised concept of Chrysoperla mediterranea (Holzel), a green lacewing associated with conifers: courtship songs across 2800 kilometres of Europe (Neuroptera: Chrysopidae). Syst Entomol 24:335–350

    Google Scholar 

  • Henry CS, Wells MLM, Simon CM (1999b) Convergent evolution of courtship songs among cryptic species of the Carnea group of green lacewings (Neuroptera: Chrysopidae: Chrysoperla). Evolution 53:1165–1179

    Google Scholar 

  • Henry CS, Brooks SJ, Duelli P, Johnson JB (2002) Discovering the true Chrysoperla carnea (Insecta: Neuroptera: Chrysopidae) using song analysis, morphology, and ecology. Ann Entomol Soc Am 95:172–191

    Google Scholar 

  • Herberstein ME, Tso I (2011) Spider webs: evolution, diversity, and plasticity. In: Herberstein ME (ed) Spider behaviour: flexibility and versatility. Cambridge University Press, Cambridge, pp 57–99

    Google Scholar 

  • Hill PSM (2001) Vibration and animal communication: a review. Am Zool 41:1135–1142

    Google Scholar 

  • Hill PSM (2008) Vibrational communication in animals. Harvard University Press, Cambridge

    Google Scholar 

  • Hill PSM, Shadley JR (1997) Substrate vibration as a component of a calling song. Naturwissenschaften 84:460–463

    CAS  Google Scholar 

  • Hoefler CD, Carlascio AL, Persons MH, Rypstra AL (2009) Male courtship repeatability and potential indirect genetic benefits in a wolf spider. Anim Behav 78:183–188

    Google Scholar 

  • Holland B, Rice WR (1998) Perspective: chase-away sexual selection: antagonistic seduction versus resistance. Evolution 52:1–7

    Google Scholar 

  • Hunt RE (1994) Vibrational signals associated with mating behavior in the treehopper, Enchenopa binotata Say (Hemptera: Homoptera: Membracidae). J New York Entomol S 102:266–270

    Google Scholar 

  • Joyce AL, Hunt RE, Vinson SB, Bernal JS (2007) Courtship songs of the Cotesia flavipes complex. J Insect Sci 7:12

    Google Scholar 

  • Joyce AL, Hunt RE, Bernal JS, Vinson SB (2008) Substrate influences mating success and transmission of courtship vibrations for the parasitoid Cotesia marginiventris. Entomol Exp Appl 127:39–47

    Google Scholar 

  • Keuper A, Kuhne R (1983) The acoustic behavior of the bushcricket Tettigonia cantans 2. Transmission of airborne-sound and vibration signals in the biotope. Behav Process 8:125–145

    CAS  Google Scholar 

  • Klarner D, Barth FG (1982) Vibratory signals and prey capture in orb-weaving spiders (Zygiella x-notata, Nephila clavipes, Araneidae). J Comp Physiol 148:445–455

    Google Scholar 

  • Kotiaho J, Alatalo RV, Mappes J, Parri S (1996) Sexual selection in a wolf spider: Male drumming activity, body size, and viability. Evolution 50:1977–1981

    Google Scholar 

  • Kotiaho JS, Alatalo RV, Mappes J, Nielsen MG, Parri S, Rivero A (1998) Energetic costs of size and sexual signalling in a wolf spider. P Roy Soc B Bio 265:2203–2209

    Google Scholar 

  • Kotiaho JS, Alatalo RV, Mappes J, Parri S (2000) Microhabitat selection and audible sexual signalling in the wolf spider Hygrolycosa rubrofasciata (Araneae, Lycosidae). Acta Etholog 2:123–128

    Google Scholar 

  • Kroodsma DE, Miller EH (eds) (1996) Ecology and evolution of acoustic communication in birds. Cornell University Press, Ithaca

    Google Scholar 

  • Lardner B, bin Lakim M (2002) Tree-hole frogs exploit resonance effects. Nature 420:475

    CAS  PubMed  Google Scholar 

  • Magal C, Scholler M, Tautz J, Casas J (2000) The role of leaf structure in vibration propagation. J Acoust Soc Am 108:2412–2418

    CAS  PubMed  Google Scholar 

  • Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin, pp 332–354

    Google Scholar 

  • Mason MJ, Narins PM (2001) Seismic signal use by fossorial mammals. Am Zool 41:1171–1184

    Google Scholar 

  • Masters WM (1984) Vibrations in the orbwebs of Nuctenea sclopetaria (Araneidae).1. Transmission through the web. Behav Ecol 15:207–215

    Google Scholar 

  • Masters WM, Markl H (1981) Vibration signal transmission in spider orb webs. Science 213:363–365

    CAS  PubMed  Google Scholar 

  • Masters WM, Markl HS, Moffatt AJM (1986) Transmission of vibration in a spider’s web. In: Shear W (ed) Spiders, web, behaviour and evolution. Stanford University Press, Stanford

    Google Scholar 

  • McNett GD, Cocroft RB (2008) Host shifts favor vibrational signal divergence in Enchenopa binotata treehoppers. Behav Ecol 19:650–656

    Google Scholar 

  • McNett G, Miles R, Homentcovschi D, Cocroft R (2006) A method for two-dimensional characterization of animal vibrational signals transmitted along plant stems. J Comp Physiol A 192:1245–1251

    Google Scholar 

  • Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281

    Google Scholar 

  • Miklas N, Stritih N, Čokl A, Virant-Doberlet M, Renou M (2001) The influence of substrate on male responsiveness to the female calling song in Nezara viridula. J Insect Behav 14:313–332

    Google Scholar 

  • Miklas N, Čokl A, Renou M, Virant-Doberlet M (2003) Variability of vibratory signals and mate choice selectivity in the southern green stink bug. Behav Process 61:131–142

    Google Scholar 

  • Miles RN, Cocroft RB, Gibbons C, Batt D (2001) A bending wave simulator for investigating directional vibration sensing in insects. J Acoust Soc Am 110:579–587

    CAS  PubMed  Google Scholar 

  • Miranda X (2006) Substrate-borne signal repertoire and courtship jamming by adults of Ennya chrysura (Hemiptera: Membracidae). Ann Entomol Soc Am 99:374–386

    Google Scholar 

  • Morris GK (1980) Calling display and mating behavior of Copiphora rhinoceros pictet (Orthoptera, Tettigoniidae). Anim Behav 28:42–51

    Google Scholar 

  • Morton E (1975) Ecological sources of selection on avian sounds. Am Nat 109:855–869

    Google Scholar 

  • Narins PM (2001) Vibration communication in vertebrates. In: Barth FG, Schmid A (eds) Ecology of sensing. Springer, Berlin, pp 127–149

    Google Scholar 

  • Nascimento FS, Hrncir M, Tolfiski A, Zucchi R (2005) Scraping sounds produced by a social wasp (Asteloeca ujhelyii, Hymenoptera: Vespidae). Ethology 111:1116–1125

    Google Scholar 

  • O’Connell-Rodwell CE (2007) Keeping an “ear” to the ground: seismic communication in elephants. Physiology 22:287–294

    PubMed  Google Scholar 

  • O’Connell-Rodwell CE, Arnason BT, Hart LA (2000) Seismic properties of Asian elephant (Elephas maximus) vocalizations and locomotion. J Acoust Soc Am 108:3066–3072

    PubMed  Google Scholar 

  • O’Connell-Rodwell CE, Hart LA, Arnason BT (2001) Exploring the potential use of seismic waves as a communication channel by elephants and other large mammals. Am Zool 41:1157–1170

    Google Scholar 

  • Ota D, Čokl A (1991) Mate location in the southern green stink bug, Nezara viridula (Heteroptera: Pentatomidae), mediated through substrate-borne signals on ivy. J Insect Behav 4:441–447

    Google Scholar 

  • Panizzi AR (1997) Wild hosts of Pentatomids: ecological significance and role in their pest status on crops. Annu Rev Entomol 42:99–122

    CAS  PubMed  Google Scholar 

  • Parker GA (2006) Sexual conflict over mating and fertilization: an overview. Philos T Roy Soc B 361:235–259

    CAS  Google Scholar 

  • Parri S, Alatalo RV, Kotiaho J, Mappes J (1997a) Female choice for male drumming in the wolf spider Hygrolycosa rubrofasciata. Anim Behav 53:305–312

    Google Scholar 

  • Parri S, Alatalo RV, Kotiaho JS, Mappes J (1997b) Female choice for male drumming in the wolf spider Hygrolycosa rubrofasciata. Anim Behav 53:305–312

    Google Scholar 

  • Parri S, Alatalo RV, Kotiaho JS, Mappes J, Rivero A (2002) Sexual selection in the wolf spider Hygrolycosa rubrofasciata: female preference for drum duration and pulse rate. Behav Ecol 13:615–621

    Google Scholar 

  • Patek SN (2001) Spiny lobsters stick and slip to make sound. Nature 411:153–154

    CAS  PubMed  Google Scholar 

  • Patek SN, Baio JE (2007) The acoustic mechanics of stick slip friction in the California spiny lobster (Panulirus interruptus). J Exp Biol 210:3538–3546

    CAS  PubMed  Google Scholar 

  • Paul RC, Walker TJ (1979) Arboreal singing in a burrowing cricket, Anurogryllus arboreus. J Comp Physiol 132:217–223

    Google Scholar 

  • Penna M (2004) Amplification and spectral shifts of vocalizations inside burrows of the frog Eupsophus calcaratus (Leptodactylidae). J Acoust Soc Am 116:1254–1260

    PubMed  Google Scholar 

  • Peretti AV, Aisenberg A (2011) Communication under sexual selection hypotheses: challenging prospects for future studies under extreme sexual conflict. Acta Etholog 14:109–116

    Google Scholar 

  • Polajnar J, Čokl A (2008) The effect of vibratory disturbance on sexual behaviour of the southern green stink bug Nezara viridula (Heteroptera, Pentatomidae). Centr Eur J Biol 3:189–197

    Google Scholar 

  • Polajnar J, Svenšek D, Čokl A (2012) Resonance in herbaceous plant stems as a factor in vibrational communication of pentatomid bugs (Heteroptera: Pentatomidae). J Roy Soc Interface 9:1898–1907

    Google Scholar 

  • Proctor HC (1992) Sensory exploitation and the evolution of male mating behaviour: a cladistics test using water mites (Acari: Parasitengona). Anim Behav 44:745–752

    Google Scholar 

  • Prozesky-Schulze L, Prozesky OPM, Anderson F, Van Der Merwe GJJ (1975) Use of a self-made sound baffle by a tree cricket. Nature 255:142–143

    Google Scholar 

  • Randall JA (2001) Evolution and function of drumming as communication in mammals. Am Zool 41:1143–1156

    Google Scholar 

  • Rivero A, Alatalo RV, Kotiaho JS, Mappes J, Parri S (2000) Acoustic signalling in a wolf spider: can signal characteristics predict male quality? Anim Behav 48:188–194

    Google Scholar 

  • Rodriguez RL, Cocroft RB (2006) Divergence in female duetting signals in the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae). Ethology 112:1231–1238

    Google Scholar 

  • Rodriguez RL, Ramaswamy K, Cocroft RB (2006) Evidence that female preferences have shaped male signal evolution in a clade of specialized plant-feeding insects. P Roy Soc B Bio 273:2585–2593

    Google Scholar 

  • Rodriguez RL, Sullivan LM, Snyder RL, Cocroft RB (2008) Host shifts and the beginning of signal divergence. Evolution 62:12–20

    PubMed  Google Scholar 

  • Rohrig A, Kirchner WH, Leuthold RH (1999) Vibrational alarm communication in the African fungus-growing termite genus Macrotermes (Isoptera, Termitidae). Insect Soc 46:71–77

    Google Scholar 

  • Rovner JS (1975) Sound production by Nearctic wolf spiders: a substratum-coupled stridulatory mechanism. Science 190:1309–1310

    Google Scholar 

  • Rovner JS (1980) Vibration in Heteropoda venatoria (Sparassidae): a 3rd method of sound production in spiders. J Arachnol 8:193–200

    Google Scholar 

  • Rowe L, Arnqvist G (2002) Sexually antagonistic coevolution in a mating system: combining experimental and comparative approaches to address evolutionary processes. Evolution 56:754–767

    PubMed  Google Scholar 

  • Rowe L, Cameron E, Day T (2005) Escalation, retreat, and female indifference as alternative outcomes of sexually antagonistic coevolution. Am Nat 165:S5–S18

    PubMed  Google Scholar 

  • Rundus AS, Santer RD, Hebets EA (2010) Multimodal courtship efficacy of Schizocosa retrorsa wolf spiders: implications of an additional signal modality. Behav Ecol 21:701–707

    Google Scholar 

  • Ryan MJ (1990) Sexual selection, sensory systems, and sensory exploitation. In: Futuyma D, Antonovics J (eds) Oxford surveys in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Ryan MJ, Rand AS (1993) Sexual selection and signal evolution: the ghosts of biases past. Philos T Roy Soc B 340:187–195

    Google Scholar 

  • Sandeman DC, Tautz J, Lindauer M (1996) Transmission of vibration across honeycombs and its detection by bee leg receptors. J Exp Biol 199:2585–2594

    PubMed  Google Scholar 

  • Scheffer SJ, Uetz GW, Stratton GE (1996) Sexual selection, male morphology, and the efficacy of courtship signalling in two wolf spiders (Araneae: Lycosidae). Behav Ecol Sociobiol 38:17–23

    Google Scholar 

  • Shamble PS, Wilgers DJ, Swoboda KA, Hebets EA (2009) Courtship effort is a better predictor of mating success than ornamentation for male wolf spiders. Behav Ecol 20:1242–1251

    Google Scholar 

  • Shannon CE (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Sivalinghem S, Kasumovic MM, Mason AC, Andrade MCB, Elias DO (2010) Vibratory communication in the jumping spider Phidippus clarus: polyandry, male courtship signals, and mating success. Behav Ecol 21:1308–1314

    Google Scholar 

  • Stevens M (2012) Sensory ecology, behaviour and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Stratton GE, Uetz GW (1981) Acoustic communication and reproductive isolation in two species of wolf spiders (Araneae: Lycosidae). Science 214:575–577

    Google Scholar 

  • Stratton GE, Uetz GW (1983) Communication via substrate-coupled stridulation and reproductive isolation in wolf spiders (Aranea: Lycosidae). Anim Behav 31:164–172

    Google Scholar 

  • Sullivan-Beckers L, Cocroft RB (2010) The importance of female choice, male-male competition, and signal transmission as causes of selection on male mating signals. Evolution 64:3158–3171

    PubMed  Google Scholar 

  • Tautz J (1996) Honeybee waggle dance: recruitment success depends on the dance floor. J Exp Biol 199:1375–1381

    PubMed  Google Scholar 

  • Tautz J, Casas J, Sandeman D (2001) Phase reversal of vibratory signals in honeycomb may assist dancing honeybees to attract their audience. J Exp Biol 204:3737–3746

    CAS  PubMed  Google Scholar 

  • Taylor PW, Roberts JA, Uetz GW (2005) Flexibility in the multi-modal courtship of a wolf spider, Schizocosa ocreata. J Ethol 23:71–75

    Google Scholar 

  • Uetz GW, Roberts JA (2002) Multisensory cues and multimodal communication in spiders: Insights form video/audio playback studies. Brain Behav Evolut 59:222–230

    Google Scholar 

  • Uetz GW, Stratton GE (1982) Acoustic communication and reproductive isolation in spiders. In: Witt PN, Rovner JS (eds) Spider communication: mechanisms and ecological significance. Princeton University Press, Princeton, pp 123–129

    Google Scholar 

  • Uetz GW, Roberts JA, Taylor PW (2009) Multimodal communication and mate choice in wolf spiders: female response to multimodal versus unimodal signals. Anim Behav 78:299–305

    Google Scholar 

  • Uhl G, Elias DO (2011) Communication. In: Herberstein ME (ed) Spider behavior: flexibility and versatility. Cambridge University Press, Cambridge, pp 127–190

    Google Scholar 

  • Virant-Doberlet M, Čokl A (2004) Vibrational communication in insects. Neotrop Entomol 33:121–134

    Google Scholar 

  • Walker TJ, Figg DE (1990) Song and acoustic burrow of the prairie mole cricket, Gryllotalpa major (Orthoptera, Gryllidae). J Kans Entomol Soc 63:237–242

    Google Scholar 

  • Wehner R (1987) Matched-filters—neural models of the external world. J Comp Physiol 161:511–531

    Google Scholar 

  • Wiley C, Shaw KL (2010) Multiple genetic linkages between female preference and male signal in rapidly speciating Hawaiian crickets. Evolution 64:2238–2245

    PubMed  Google Scholar 

  • Wood TK (1993) Speciation of the Enchenopa binotata complex (Insecta: Homoptera: Membracidae). In: Lees DR, Edwards D (eds) Evolutionary patterns and processes. Academic Press, New York, pp 299–317

    Google Scholar 

  • Wood TK, Keese MC (1990) Host-plant-induced assortative mating in Enchenopa treehoppers. Evolution 44:619–628

    Google Scholar 

  • Wood TK, Olmstead KL, Guttman SI (1990) Insect phenology mediated by host-plant water relations. Evolution 44:629–636

    Google Scholar 

  • Zefa E, Martins LD, Szinwelski N (2008) Complex mating behavior in Adelosgryllus rubricephalus (Orthoptera, Phalangopsidae, Grylloidea). Iheringia Ser Zool 98:325–328

    Google Scholar 

  • Zunic A, Čokl A, Doberlet MV, Millar JG (2008) Communication with signals produced by abdominal vibration, tremulation, and percussion in Podisus maculiventris (Heteroptera: Pentatomidae). Ann Entomol Soc Am 101:1169–1178

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian O. Elias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Elias, D.O., Mason, A.C. (2014). The Role of Wave and Substrate Heterogeneity in Vibratory Communication: Practical Issues in Studying the Effect of Vibratory Environments in Communication. In: Cocroft, R., Gogala, M., Hill, P., Wessel, A. (eds) Studying Vibrational Communication. Animal Signals and Communication, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43607-3_12

Download citation

Publish with us

Policies and ethics