Skip to main content

Analysis of Unsteady Lagrangian and Eulerian Characteristics of a Liquid Fluidized Bed by Direct Numerical Simulation

  • Conference paper
Turbulence and Interactions

Abstract

The characterization of fluidized beds is still a challenging task for macroscopic modeling issues and industrial applications. The macroscopic models require to be fed with parameters or laws that are not well understood or even impossible to estimate as soon as the solid fraction is larger than 0.1. The aim of the present work is to investigate Direct Numerical Simulation [1] of unsteady particle flows in order to solve all the time and space scales of the flow and the particles and to allow for the estimate of unknown macroscopic or stochastic characteristics of the flow. In the DNS, the particles are fully resolved, i.e. the particle diameter is larger than the grid size and to the smallest hydrodynamic scale. A benchmark experimental fluidized bed [2] is simulated and analyzed in terms of macroscopic and Lagrangian characteristics. Comparisons of numerical solutions to measurements are achieved with success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vincent, S., Brändle de Motta, J.C., Sarthou, A., Estivalezes, J.-L., Simonin, O., Climent, E.: A Lagrangian VOF tensorial penalty method for the DNS of resolved particle-laden flows. Under Correction in Journal of Computational Physics (2012)

    Google Scholar 

  2. Aguilar Corona, A.: Agitation of particles in a liquid fluidized bed. Experimental study. PhD thesis, Toulouse University (2008)

    Google Scholar 

  3. Ferrante, A., Elghobashi, S.: On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence. Physics of Fluids 15, 315–329 (2003)

    Article  ADS  Google Scholar 

  4. Ahmed, A.M., Elghobashi, S.: Direct numerical simulation of particle dispersion in homogeneous turbulent shear flows. Physics of Fluids 13, 3346–3364 (2001)

    Article  ADS  Google Scholar 

  5. Fede, P., Simonin, O.: Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles. Physics of Fluids 18, 45103–45120 (2006)

    Article  Google Scholar 

  6. Hu, H.H., Joseph, D.D., Crochet, M.J.: Direct Simulation of Fluid Particle Motions. Theoretical and Computational Fluid Mechanics 3, 285–306 (1992)

    Article  MATH  ADS  Google Scholar 

  7. Fadlun, E.A., Verzicco, R., Orlandi, P., Mohd-Yusofz, J.: Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations. Journal of Computational Physics 161, 35–60 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Kim, J., Kim, D., Choi, H.: An immersed-boundary finite-volume method for simulations of flow in complex geometries. Journal of Computational Physics 171, 132–150 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Takagi, S., Oguz, H.N., Zhang, Z., Prosperetti, A.: PHYSALIS: a new method for particle simulation Part II: two-dimensional Navier-Stokes flow around cylinders. Journal of Computational Physics 187, 371–390 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Coquerelle, M., Cottet, G.H.: A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. Journal of Computational Physics 227, 9121–9137 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Simeonov, J.A., Calantoni, J.: A pressure boundary integral method for direct fluid-particle simulations on Cartesian grids. Journal of Computational Physics 230, 1749–1765 (2011)

    Article  MATH  ADS  Google Scholar 

  12. Höfler, K., Schwarzer, S.: Navier-Stokes simulation with constraint forces: Finite-difference method for particle-laden flows and complex geometries. Physical Review E 61, 7146–7160 (2000)

    Article  ADS  Google Scholar 

  13. Maury, B.: Direct simulations of 2D fluid-particle flows in biperiodic domains. Journal of Computational Physics 156, 325–351 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.D., Périaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. Journal of Computational Physics 169, 363–426 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Zhang, Z., Prosperetti, A.: A second-order method for three-dimensional particle simulation. Journal of Computational Physics 210, 292–324 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Uhlmann, M.: An immersed boundary method with direct forcing for the simulation of particulate flows. Journal of Computational Physics 209(2), 448–476 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Uhlmann, M.: Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Physics of Fluids 20(5), 053305 (2008)

    Google Scholar 

  18. Ten Cate, A., Derksen, J.J., Portela, L.M., Van Der Akker, E.A.: Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence. Journal of Fluid Mechanics 519, 233–271 (2004)

    Article  MATH  ADS  Google Scholar 

  19. Gao, H., Wang, L.-P.: Lattice Boltzmann simulation of turbulent flow laden with finite-size particles. In: Proceedings of the 7th International Conference on Multiphase Flows, ICMF 2010 (2010)

    Google Scholar 

  20. Lucci, F., Ferrante, A., Elghobashi, S.: Modulation of isotropic turbulence by particles of Taylor length-scale size. Journal of Fluid Mechanics 650, 5–55 (2010)

    Article  MATH  ADS  Google Scholar 

  21. Lucci, F., Ferrante, A., Elghobashi, S.: Is Stokes number an appropriate indicator for turbulence modulation by particles of Taylor-length-scale size? Physics of Fluids 23, 025101:1–025101:7 (2011)

    Google Scholar 

  22. Ritz, J.-B., Caltagirone, J.P.: A numerical continuous model for the hydrodynamics of fluid particle systems. International Journal for Numerical Methods in Fluids 30, 1067–1090 (1999)

    Article  MATH  ADS  Google Scholar 

  23. Randrianarivelo, T.N., Pianet, G., Vincent, S., Caltagirone, J.-P.: Numerical modelling of the solid particle motion using a new penalty method. International Journal for Numerical Methods in Fluids 47, 1245–1251 (2005)

    Article  MATH  ADS  Google Scholar 

  24. Randrianarivelo, T.N., Vincent, S., Simonin, O., Caltagirone, J.-P.: A DNS approach dedicated to the analysis of fluidized beds. Fluid Mechanics Applications 81, 207–214 (2007)

    Article  Google Scholar 

  25. Khadra, K., Angot, P., Parneix, S., Caltagirone, J.P.: Fictitious domain approach for numerical modelling of Navier-Stokes equations. International Journal for Numerical Methods in Fluids 34, 651–684 (2000)

    Article  MATH  ADS  Google Scholar 

  26. Richardson, J.F., Zaki, W.N.: Sedimentation and fluidization. Part 1. Transactions of the Institution of Chemical Engineering 32, 35–53 (1954)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vincent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vincent, S., Estivalezes, J.L., de Motta, J.C.B., Simonin, O., Masbernat, O. (2014). Analysis of Unsteady Lagrangian and Eulerian Characteristics of a Liquid Fluidized Bed by Direct Numerical Simulation. In: Deville, M., Estivalezes, JL., Gleize, V., Lê, TH., Terracol, M., Vincent, S. (eds) Turbulence and Interactions. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43489-5_21

Download citation

Publish with us

Policies and ethics