Skip to main content

Super-Resolution Fluorescence Optical Microscopy: Targeted and Stochastic Read-Out Approaches

  • Conference paper
  • First Online:
Novel Approaches for Single Molecule Activation and Detection

Abstract

This chapter is dedicated to a general overview of some of the emerging and well-established super-resolution techniques recently developed and known as optical nanoscopy and localization precision method. Due to the way of probing the sample, one can consider them as targeted and stochastic-based techniques, respectively. Here, we stress how super-resolution is obtained without violating any physical law, i.e., diffraction. The strong idea behind such approaches, operating in fluorescence contrast mode, is related to the ability of controlling the states, bright/dark or red/blue, of the fluorescent labels being used in order to circumvent the diffraction barrier. Super-resolution is achieved by precluding simultaneous emission of spectrally identical emission of adjacent (<diffraction limit distance) molecules. Also, the evolution of such techniques toward applications on thick (>50 micron thickness) samples is discussed along with correlative microscopy approaches involving scanning probe methods. Examples are given within the neuroscience framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aquino D, Schönle A, Geisler C, Middendorff CV, Wurm CA, Okamura Y, Lang T, Hell SW, Egner A (2011) Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores. Nat Methods 8(4):353–359

    Article  Google Scholar 

  2. Baddeley D, Crossman D, Rossberger S, Cheyne JE, Montgomery JM, Jayasinghe ID, Cremer C, Cannell MB, Soeller C (2011) 4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues. PLoS One 6(5):e20645

    Article  ADS  Google Scholar 

  3. Bates M, Huang GTDB, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753

    Article  ADS  Google Scholar 

  4. Berning S, Willig KI, Steffens H, Dibaj P, Hell SW (2012) Nanoscopy in a living mouse brain. Science 335(6068):551

    Article  ADS  Google Scholar 

  5. Bethge P, Chéreau R, Avignone E, Marsicano G, Nägerl UV (2013) Two-photon excitation STED microscopy in two colors in acute brain slices. Biophys J 104(4):778–785

    Article  Google Scholar 

  6. Betzig E, Chichester RJ (1993) Single molecules observed by near field scanning optical microscopy. Science 262:1422–1425

    Article  ADS  Google Scholar 

  7. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  ADS  Google Scholar 

  8. Bianchini P, Harke B, Galiani S, Vicidomini G, Diaspro A (2012) Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging. Proc Natl Acad Sci USA 109(17): 6390–6393

    Google Scholar 

  9. Bianco B, Diaspro A (1989) Analysis of the three dimensional cell imaging obtained with optical microscopy techniques based on defocusing. Cell Biophys 15(3):189–200

    Google Scholar 

  10. Bobroff N (1986) Position measurement with a resolution and noise limited instrument. Rev Sci Instrum 57(6):1152–1157

    Google Scholar 

  11. Cella Zanacchi F, Lavagnino Z, Faretta M, Furia L, Diaspro A (2013) Light-sheet confined super-resolution using two-photon photoactivation. PLoS One 8(7):e67667

    Article  ADS  Google Scholar 

  12. Cella Zanacchi F, Lavagnino Z, Perrone Donnorso M, Del Bue A, Furia L, Faretta M, Diaspro A (2011) Live-cell 3D super-resolution imaging in thick biological samples. Nat Methods 8(12):1047–1049

    Article  Google Scholar 

  13. Cella Zanacchi F, Lavagnino Z, Ronzitti E, Diaspro A (2011) Two-photon fluorescence excitation within a light sheet based microscopy architecture. Proc SPIE 7903(1)

    Google Scholar 

  14. Chacko JV, Canale C, Harke B, Diaspro A (2013) Sub-diffraction nano manipulation using STED AFM. PLoS One 8(6):e66608

    Article  ADS  Google Scholar 

  15. Chacko JV, Zanacchi FC, Diaspro A (2013) Probing cytoskeletal structures by coupling optical superresolution and AFM techniques for a correlative approach. Cytoskeleton 70(11):729–740

    Google Scholar 

  16. Chirico G, Cannone F, Beretta S, Baldini G, Diaspro A (2001) Single molecule studies by means of the two-photon fluorescence distribution. Microsc Res Tech 55(5):359–364

    Article  Google Scholar 

  17. Chirico G, Cannone F, Beretta S, Diaspro A, Campanini B, Bettati S, Ruotolo R, Mozzarelli A (2002) Dynamics of green fluorescent protein mutant2 in solution, on spin-coated glasses, and encapsulated in wet silica gels. Protein Sci 11(5):1152–1161

    Article  Google Scholar 

  18. Coelho M, Maghelli N, Tolic-Norrelykke IM (2013) Single-molecule imaging in vivo: the dancing building blocks of the cell. Integr Biol (Camb) 5(5):748–758

    Article  Google Scholar 

  19. Del Bue A, Cella Zanacchi F, Diaspro A (2013). Super-resolution 3D reconstruction of thick biological samples: a computer vision perspective. IEEE international conference on computer vision (ICCV)

    Google Scholar 

  20. Denk W, Strickler JK, Webb WW (1990) Two photon laser scanning fluorescence microscopy. Science 248(4951):73–76

    Google Scholar 

  21. Denk W, Svoboda K (1997) Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18(3):351–357

    Article  Google Scholar 

  22. Diaspro A (2001) Confocal and two-photon microscoscopy: foundations, applications, and advances. Wiley-Liss Inc, New York

    Google Scholar 

  23. Diaspro A (2010a) Nanoscopy and multidimensional optical fluorescence microscopy. CRC Press, Taylor & Francis

    Google Scholar 

  24. Diaspro A (2010b) Optical fluorescence microscopy: from the spectral to the nano dimension. Springer, Berlin

    Google Scholar 

  25. Diaspro A (2013) Taking three-dimensional two-photon excitation microscopy further: encoding the light for decoding the brain. Microsc Res Tech 76(10):985–987

    Google Scholar 

  26. Diaspro A, Chirico G, Collini M (2006) Two-photon fluorescence excitation and related techniques in biological microscopy. Q Rev Biophys 15:1–70

    Google Scholar 

  27. Ding JB, Takasaki KT, Sabatini BL (2009) Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 63(4):429–437

    Article  Google Scholar 

  28. Ducros M, Houssen YG, Bradley J, de Sars V, Charpak S (2013) Encoded multisite two-photon microscopy. Proc Natl Acad Sci USA 110(32):13138–13143

    Google Scholar 

  29. Egner A, Geisler C, von Middendorff C, Bock H, Wenzel D, Medda R, Andresen M, Stiel AC, Jakobs S, Eggeling C, Schönle A, Hell SW (2007) Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys J 93(9):3285–3290

    Article  Google Scholar 

  30. Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9(12):929–943

    Article  Google Scholar 

  31. Flors C (2013) Super-resolution fluorescence imaging of directly labelled DNA: from microscopy standards to living cells. J Microsc 251(1):1–4

    Article  Google Scholar 

  32. Fölling J, Belov V, Riedel D, Schönle A, Egner A, Eggeling C, Bossi M, Hell SW (2008) Fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers. ChemPhysChem 9(2):321–326

    Article  Google Scholar 

  33. Fölling J, Bossi M, Bock H, Medda R, Wurm CA, Hein B, Jakobs S, Eggeling C, Hell SW (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5(11):943–945

    Article  Google Scholar 

  34. Galiani S, Harke B, Vicidomini G, Lignani G, Benfenati F, Diaspro A, Bianchini P (2012) Strategies to maximize the performance of a STED microscope. Opt Express 20(7):7362–7374

    Article  ADS  Google Scholar 

  35. Gould TJ, Burke D, Bewersdorf J, Booth MJ (2012) Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt Express 20(19):20998–21009

    Article  ADS  Google Scholar 

  36. Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198(Pt 2):82–87

    Article  Google Scholar 

  37. Gustafsson MG (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA 102:13081–13086

    Article  ADS  Google Scholar 

  38. Gustafsson MG, Shao L, Carlton PM, Wang CJR, Golubovskaya IN, Cande WZ, Agard DA, Sedat JW (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94(12):4957–4970

    Article  Google Scholar 

  39. Harke B, Chacko JV, Haschke H, Canale C, Diaspro A (2012) A novel nanoscopic tool by combining AFM with STED microscopy. Opt Nanoscopy 1(1):3

    Article  Google Scholar 

  40. Heilemann M, van de Linde S, Mukherjee A, Sauer M (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed Engl 48(37):6903–6908

    Article  Google Scholar 

  41. Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158

    Article  ADS  Google Scholar 

  42. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    Article  ADS  Google Scholar 

  43. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272

    Article  Google Scholar 

  44. Hou S, Liang L, Deng S, Chen J, Huang Q, Cheng Y, Fan C (2013) Nanoprobes for super-resolution fluorescence imaging at the nanoscale. Sci China Chem 57(1):100–106

    Article  Google Scholar 

  45. Huang B (2011) An in-depth view. Nat Methods 8(4):304–305

    Article  Google Scholar 

  46. Huang B, Jones SA, Brandenburg B, Zhuang X (2008) Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat Methods 5(12):1047–1052

    Article  Google Scholar 

  47. Huisken J, Swoger J, Bene FD, Wittbrodt J, Stelzer EHK (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305(5686):1007–1009

    Article  ADS  Google Scholar 

  48. Juette MF, Gould TJ, Lessard MD, Mlodzianoski MJ, Nagpure BS, Bennett BT, Hess ST, Bewersdorf J (2008) Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat Methods 5(6):527–529

    Article  Google Scholar 

  49. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322(5904):1065–1069

    Article  ADS  Google Scholar 

  50. Kempf C, Staudt T, Bingen P, Horstmann H, Engelhardt J, Hell SW, Kuner T (2013) Tissue multicolor STED nanoscopy of presynaptic proteins in the calyx of held. PLoS One 8(4):e62893

    Article  ADS  Google Scholar 

  51. Kim H, Ha T (2013) Single-molecule nanometry for biological physics. Rep Prog Phys 76:1–16

    Article  Google Scholar 

  52. Lavagnino Z, Cella Zanacchi F, Ronzitti E, Diaspro A (2013) Two-photon excitation selective plane illumination microscopy (2PE-SPIM) of highly scattering samples: characterization and application. Opt Express 21(5):5998–6008

    Article  ADS  Google Scholar 

  53. Lee H-LD, Sahl SJ, Lew MD, Moerner WE (2012) The double-helix microscope super-resolves extended biological structures by localizing single blinking molecules in three dimensions with nanoscale precision. Appl Phys Lett 100(15):153701–1537013

    Article  ADS  Google Scholar 

  54. Li Q, Wu SSH, Chou KC (2009) Subdiffraction-limit two-photon fluorescence microscopy for GFP-tagged cell imaging. Biophys J 97(12):3224–3228

    Article  Google Scholar 

  55. Loew LM, Hell SW (2013) Superresolving dendritic spines. Biophys J 104(4):741–743

    Article  Google Scholar 

  56. Lukyanov KA, Chudakov DM, Lukyanov S, Vverkhusha V (2005) Innovation: photoactivatable fluorescent proteins. Nat Rev Mol Cell Biol 6(11):885–889

    Article  Google Scholar 

  57. Mandula O, Wicker MKK, Krampert G, Kleppe I, Heintzmann R (2012) Line scan: structured illumination microscopy super-resolution imaging in thick fluorescent samples. Opt Express 20:24167–24174

    Google Scholar 

  58. Moerner WE, Kador L (1989) Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett 62:2535–2538

    Article  ADS  Google Scholar 

  59. Moneron G, Hell SW (2009) Two-photon excitation STED microscopy. Opt Express 17(17):14567–14573

    Article  ADS  Google Scholar 

  60. Monserrate A, Casado S, Flors C (2013) Correlative atomic force microscopy and localizationbased superresolution microscopy: revealing labelling and image reconstruction artefacts. ChemPhysChem Comm, pp 1–5 (in press)

    Google Scholar 

  61. Mortensen KI, Churchman LS, Spudich JA, Flyvbjerg H (2010) Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat Methods 7(5):377–381

    Article  Google Scholar 

  62. Mukamel EA, Babcock H, Zhuang X (2012) Statistical deconvolution for superresolution fluorescence microscopy. Biophys J 102(10):2391–2400

    Article  Google Scholar 

  63. Nanguneri S, Flottmann B, Horstmann H, Heilemann M, Kuner T (2012) Three-dimensional, tomographic super-resolution fluorescence imaging of serially sectioned thick samples. PLoS One 7(5):e38098

    Article  ADS  Google Scholar 

  64. Ntziachristos V (2010) Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 7(8):603–614

    Article  Google Scholar 

  65. Palero J, Santos SICO, Artigas D, Loza-Alvarez P (2010) A simple scanless two-photon fluorescence microscope using selective plane illumination. Opt Express 18(8):8491–8498

    Article  ADS  Google Scholar 

  66. Pawley J (Ed.) (2006) Handbook of biological confocal microscopy, 3rd ed., XXVIII, p 988 Springer

    Google Scholar 

  67. Punge A, Rizzoli SO, Jahn R, Wildanger JD, Meyer L, SchÃnle A, Kastrup L, Hell SW (2008) 3D reconstruction of high-resolution STED microscope images. Microsc Res Tech 71(9):644–650

    Article  Google Scholar 

  68. Quirin S, Pavani SRP, Piestun R (2012) Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions. Proc Natl Acad Sci USA 109(3):675–679

    Article  ADS  Google Scholar 

  69. Ronzitti E, Harke B, Diaspro A (2013) Frequency dependent detection in a STED microscope using modulated excitation light. Opt Express 21(1):210–219

    Article  ADS  Google Scholar 

  70. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    Article  Google Scholar 

  71. Sahl SJ, Moerner WE (2013) Super-resolution fluorescence imaging with single molecules. Curr Opin Struct Biol 23(5):778–787

    Article  Google Scholar 

  72. Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MGL, Leonhardt H, Sedat JW (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320(5881):1332–1336

    Article  ADS  Google Scholar 

  73. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190(2):165–175

    Article  Google Scholar 

  74. Schneider M, Barozzi S, Testa I, Faretta M, Diaspro A (2005) Two-photon activation and excitation properties of PA-GFP in the 720-920-nm region. Biophys J 89(2):1346–1352

    Article  Google Scholar 

  75. Shao L, Kner P, Rego EH, Gustafsson MGL (2011) Super-resolution 3D microscopy of live whole cells using structured illumination. Nat Methods 8(12):1044–1046

    Article  Google Scholar 

  76. Sheppard CRJ (2002) The generalized microscope. In: Diaspro A (ed) Confocal and two-photon microscopy: foundations, applications and advances. Wiley-Liss, New York, pp 1–18

    Google Scholar 

  77. Shroff H, Galbraith CG, Galbraith JA, White H, Gillette J, Olenych S, Davidson MW, Betzig E (2007) Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci USA 104(51):20308–20313

    Article  ADS  Google Scholar 

  78. Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM, Manley S, Sougrat R, Waterman CM, Kanchanawong P, Davidson MW, Fetter RD, Hess HF (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci USA 106(9):3125–3130

    Article  ADS  Google Scholar 

  79. Smith CS, Joseph N, Rieger B, Lidke KA (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7(5):373–375

    Article  Google Scholar 

  80. Spille J-H, Kaminski T, Königshoven H-P, Kubitscheck U (2012) Dynamic three-dimensional tracking of single fluorescent nanoparticles deep inside living tissue. Opt Express 20(18):19697–19707

    Article  ADS  Google Scholar 

  81. Starr R, Stahlheber S, Small A (2012) Fast maximum likelihood algorithm for localization of fluorescent molecules. Opt Lett 37(3):413–415

    Article  ADS  Google Scholar 

  82. Takasaki KT, Ding JB, Sabatini BL (2013) Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. Biophys J 104(4):770–777

    Article  Google Scholar 

  83. Testa I, Urban NT, Jakobs S, Eggeling C, Willig KI, Hell SW (2012) Nanoscopy of living brain slices with low light levels. Neuron 75(6):992–1000

    Article  Google Scholar 

  84. Testa I, Wurm CA, Medda R, Rothermel E, von Middendorf C, Fölling J, Jakobs S, Schönle A, Hell SW, Eggeling C (2010) Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength. Biophys J 99(8):2686–2694

    Article  Google Scholar 

  85. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783

    Article  Google Scholar 

  86. Tinoco I Jr, Gonzalez RL Jr (2011) Biological mechanisms, one molecule at a time. Genes Dev 25(12):1205–1231

    Article  Google Scholar 

  87. Tokunaga M, Imamoto N, Sakata-Sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5(2):159–161

    Article  Google Scholar 

  88. Truong TV, Supatto W, Koos DS, Choi JM, Fraser SE (2011) Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat Methods 8(9):757–760

    Article  Google Scholar 

  89. Urban NT, Willig KI, Hell SW, Nagerl UV (2011) STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys J 101(5):1277–1284

    Article  Google Scholar 

  90. Vaziri A, Tang J, Shroff H, Shank CV (2008) Multilayer three-dimensional super resolution imaging of thick biological samples. Proc Natl Acad Sci USA 105(51):20221–20226

    Article  ADS  Google Scholar 

  91. Vicidomini G, Coto Hernandez I, d’Amora M, Cella Zanacchi F, Bianchini P, Diaspro A (2013) Gated CW-STED microscopy: a versatile tool for biological nanometer scale investigation. Methods

    Google Scholar 

  92. Vicidomini G, Gagliani MC, Cortese K, Krieger J, Buescher P, Bianchini P, Boccacci P, Tacchetti C, Diaspro A (2010) A novel approach for correlative light electron microscopy analysis. Microsc Res Tech 73(3):215–224

    Google Scholar 

  93. Vicidomini G, Moneron G, Eggeling C, Rittweger E, Hell SW (2012) STED with wavelengths closer to the emission maximum. Opt Express 20(5):5225–5236

    Article  ADS  Google Scholar 

  94. Vicidomini G, Moneron G, Han KY, Westphal V, Ta H, Reuss M, Engelhardt J, Eggeling C, Hell SW (2011) Sharper low-power STED nanoscopy by time gating. Nat Methods 8(7):571–575

    Article  Google Scholar 

  95. Wilson T, Sheppard CJR (1984) Theory and practice of scanning optical microscopy. Academic Press, Waltham

    Google Scholar 

  96. Xie XS (1996) Single-molecule spectroscopy and dynamics at room temperature. Acc Chem Res 29:598–606

    Article  Google Scholar 

  97. Yildiz A, Selvin PR (2005) Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc Chem Res 38(7):574–582

    Article  Google Scholar 

  98. York AG, Ghitani A, Vaziri A, Davidson MW, Shroff H (2011) Confined activation and subdiffractive localization enables whole-cell PALM with genetically expressed probes. Nat Methods 8(4):327–333

    Article  Google Scholar 

  99. York AG, Parekh SH, Nogare DD, Fischer RS, Temprine K, Mione M, Chitnis AB, Combs CA, Shroff H (2012) Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat Methods 9(7):749–754

    Article  Google Scholar 

  100. Zhu L, Zhang W, Elnatan D, Huang B (2012) Faster STORM using compressed sensing. Nat Methods 9(7):721–723

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Diaspro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Diaspro, A., Zanacchi, F.C., Bianchini, P., Vicidomini, G. (2014). Super-Resolution Fluorescence Optical Microscopy: Targeted and Stochastic Read-Out Approaches. In: Benfenati, F., Di Fabrizio, E., Torre, V. (eds) Novel Approaches for Single Molecule Activation and Detection. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43367-6_3

Download citation

Publish with us

Policies and ethics