Skip to main content

HyFlex-ICE: Highly Flexible Internal Combustion Engines for Hybrid Vehicles

  • Conference paper
  • First Online:
23. Internationales Stuttgarter Symposium (ISSYM 2023)

Abstract

In the development of future passenger cars, the statutory regulations on decarbonization of the exhaust emissions must be reconciled with customer requirements. Therefore, it is necessary to con-sider the complex interactions within powertrain systems at the earliest possible stage of development, to exploit their full potential. Thus, this paper presents a holistic methodology for optimizing the operation of all powertrain components exemplified by a hybrid powertrain. The methodology enables the full potential of all powertrain components to be exploited. For this purpose, a requirements catalog focused on the powertrain was derived using a top-down systems engineering approach. This requirements catalog is necessary for the identification of all limiting factors of the powertrain system. The development and application of the methodology and the system optimization were carried out via extensive simulation studies. Thereby, an optimal design of the hybrid powertrain was derived for a defined target application. Based on this, the system limitations were identified in Real-World Driving Scenarios, considering all relevant requirements. These limitations were significantly minimized and optimized by predictive control strategies, sophisticated hardware adaptations and innovative technologies. Finally, the scalability and transferability of this holistic approach is demonstrated by developing and optimizing a P2-Hybrid powertrain for the same requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sys: Sys: System Driving Performance | El: Electric Driving Performance | HL: Half Load Mass | FL: Full Load Mass.

  2. 2.

    Corrected CO2 emissions are calculated with reference to the initial SOC (SOCinit = 16.8%) only for charge sustaining mode. No correction is considered for charge depleting mode.

    (SOCinit = 50%).

  3. 3.

    Corrected CO2 emissions are calculated with reference to the SOCend of the base simulation (24.6%).

  4. 4.

    A pre-heating duration of 30 seconds is considered for the E-Catalyst and Latent Heat Storage System.

  5. 5.

    Corrected CO2 emissions are calculated with reference to the SOCend of the base simulation (24.6%).

  6. 6.

    Corrected CO2 emissions are calculated with reference to SOCinit (Low-cost & HyFlex package: 16.8% / Advanced package: 23.1% due to battery reserve of 1 kWh).

References

  1. European Commission. COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE EUROPEAN COUNCIL, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS – The European Green Deal 2019.

    Google Scholar 

  2. Council of the EU. Fit for 55 package: Council reaches general approaches relating to emissions reductions and their social impacts 2022.

    Google Scholar 

  3. Parry, M.L. Impacts, adaptation and vulnerability: Impacts, adaptation and vulnerability contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change; Cambridge Univ. Press: Cambridge, 2007, ISBN 9780521880107.

    Google Scholar 

  4. IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA, 2022.

    Google Scholar 

  5. United Nations. Report of the Conference of the Parties on its twenty-fourth session, held in Katowice from 3 to 14 December 2018. Addendum. 2019.

    Google Scholar 

  6. United Nations. Paris Agreement. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 21 October 2022).

  7. European Commission. Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL amending Regulation (EU) 2019/631 as regards strengthening the CO2 emission performance standards for new passenger cars and new light commercial vehicles in line with the Union’s increased climate ambition. 2021/0197 (COD) 2021.

    Google Scholar 

  8. Council of the EU. REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL: amending Regulation (EU) 2019/631 as regards strengthening the CO2 emission performance standards for new passenger cars and new light commercial vehicles in line with the Union’s increased climate ambition. 10777/22 2022.

    Google Scholar 

  9. Senecal, P.K.; Leach, F. Diversity in transportation: Why a mix of propulsion technologies is the way forward for the future fleet. Results in Engineering 2019, 4, 100060, doi: https://doi.org/10.1016/j.rineng.2019.100060.

    Article  Google Scholar 

  10. FVV eV // Science for a moving society. Defossilisierung des Transportsektors: Optionen und Voraussetzungen in Deutschland; FVV Transfer + Networking Event R586, Frankfurt am Main, 2018 (accessed on 17 August 2022).

    Google Scholar 

  11. FVV eV // Science for a moving society. Future Fuels: FVV Fuels Study IV: Transformation of Mobility to the GHG-neutral Post-fossil Age; FVV Transfer + Networking Event, Frankfurt am Main, 2021. Available online: https://www.fvv-net.de/fileadmin/user_upload/medien/download/FVV__Future_Fuels__StudyIV_The_Transformation_of_Mobility__H1269_2021-10__EN.pdf (accessed on 17 August 2022).

  12. FVV eV // Science for a moving society. Energiepfade für den Straßenverkehr der Zukunft: Optionen für eine klimaneutrale Mobilität im Jahr 2050, Frankfurt am Main, 2018. Available online: https://www.fvv-net.de/fileadmin/user_upload/medien/materialien/FVV__Kraftstoffe__Studie_Energiepfade__final_v.3_2018-10-01__DE.pdf (accessed on 17 August 2022).

  13. Serrano, J.R.; Novella, R.; Piqueras, P. Why the Development of Internal Combustion Engines Is Still Necessary to Fight against Global Climate Change from the Perspective of Transportation. Applied Sciences 2019, 9, 4597, doi: https://doi.org/10.3390/app9214597.

    Article  Google Scholar 

  14. European Commission. REPowerEU: A plan to rapidly reduce dependence on Russian fossil fuels and fast forward the green transition 2022.

    Google Scholar 

  15. European Commission. JOINT COMMUNICATION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS EU external energy engagement in a changing world 2022.

    Google Scholar 

  16. Eldem, B.; Kluczek, A.; Bagiński, J. The COVID-19 Impact on Supply Chain Operations of Automotive Industry: A Case Study of Sustainability 4.0 Based on Sense–Adapt–Transform Framework. Sustainability 2022, 14, 5855, doi: https://doi.org/10.3390/su14105855.

  17. Carvalho, H.; Naghshineh, B.; Govindan, K.; Cruz-Machado, V. The resilience of on-time delivery to capacity and material shortages: An empirical investigation in the automotive supply chain. Elsevier Computers & Industrial Engineering 2022, 171, doi: https://doi.org/10.1016/j.cie.2022.108375.

  18. Kexel, J.; Müller, J.; Pischinger, S.; Günther, M. Interim report: Highly-flexbile internal combustion engines for hybrid vehicles (HyFlex-ICE), FVV 1433; FVV Transfer + Networking Event R602, Würzburg, 2022.

    Google Scholar 

  19. Kexel, J.; Müller, J.; Pischinger, S.; Günther, M. Final report: Highly-flexbile internal combustion engines for hybrid vehicles (HyFlex-ICE), FVV 1433; FVV Transfer + Networking Event R604, Würzburg, 2023.

    Google Scholar 

  20. Kexel, J.; Müller, J. HyFlex-ICE: Highly Flexible Internal Combustion Engines for Hybrid Vehicles. Final report [Preliminary]; FVV, Frankfurt am Main, 2023.

    Google Scholar 

  21. Granrath, C.; Kugler, C.; Silberg, S.; Meyer, M.-A.; Orth, P.; Richenhagen, J.; Andert, J. Feature‐driven systems engineering procedure for standardized product‐line development. Systems Engineering 2021, 24, 456–479, doi: https://doi.org/10.1002/sys.21596.

    Article  Google Scholar 

  22. Zerwas, T.; Jacobs, G.; Spütz, K.; Höpfner, G.; Drave, I.; Berroth, J.; Guist, C.; Konrad, C.; Rumpe, B.; Kohl, J. Mechanical concept development using principle solution models. IOP Conf. Ser.: Mater. Sci. Eng. 2021, 1097, 12001, doi: https://doi.org/10.1088/1757-899X/1097/1/012001.

  23. Kexel, J.; Müller, J.; Pischinger, S.; Günther, M. Optimal Powertrain Design Process Tailored for Specific Target Customer Requirements In: E-MOTIVE by FVA – 14th International Expert Forum, Conference on electric vehicle drives and e-mobility, Wolfsburg, 2022.

    Google Scholar 

  24. Balazs, A. Untersuchung zur optimierten Auslegung von Abschlussbericht Hybridantriebsträngen unter realen Fahrbedingungen (F1011); FVV-Informationstagung, 2013.

    Google Scholar 

  25. Seibel, J.; Pischinger, S. Abschlussbericht zum Vorhaben Untersuchung zur optimierten Auslegung von Ottomotoren in Hybrid-Antriebsträngen (F863); Informationstagung Motoren, Heft R 537, 2007.

    Google Scholar 

  26. FEV Software and Testing Solutions. DOE SOFTWARE WITH GLOBAL MAP OPTIMIZATION GAUSSIAN PROCESS MODEL, 2022. Available online: https://www.fev-sts.com/fileadmin/user_upload/STS/Brochure-Catalog_2022/FEV-STS_Brochure_xCAL_2022.pdf (accessed on 9 November 2022).

  27. Müller, J.; Maurer, R.; Achenbach, J.; Balazs, A.; Knauf, J. Antriebsstrangoptimierung von Hybridsystemen unter Berücksichtigung thermischer Einzelkomponentenwirkungsgrade. Liebl, J. (eds) Experten-Forum Powertrain: Reibung in Antrieb und Fahrzeug 2020. Springer Vieweg, Berlin, Heidelberg; pp 179–201.

    Google Scholar 

  28. Müller, J.; Besser, N.; Hermsen, P.; Pischinger, S.; Knauf, J.; Bagherzade, P.; Fryjan, J.; Balazs, A.; Gottorf, S. Virtual Development of Advanced Thermal Management Functions Using Model-in-the-Loop Applications. Energies 2023, 16, 3238, doi: https://doi.org/10.3390/en16073238.

    Article  Google Scholar 

  29. Müller, J.; Balazs, A.; Knauf, J.; Gottorf, S.; Besser, N.; Fryjan, J. Advanced Thermal Management Models for X-in-the-Loop Applications – A Gamechanger for Control Unit Function Development. SAE Thermal Management Systems 2021.

    Google Scholar 

  30. Beulshausen, J. Thermomanagement als Maßnahme zur Reibungsreduktion von Verbrennungsmotoren. Dissertation; RWTH Aachen University, Aachen, 2014.

    Google Scholar 

  31. Plettenberg, M.; Vieler (geb. El-Khawankey), S. Abschlussbericht im IGF-Cluster Low Friction Powertrain (LFP) des Teilprojektes M1.2: Bedarfsgerechte Kolbenkühlung; FVV FVA, Frankfurt, 2013.

    Google Scholar 

  32. Plettenberg, M.; El-Khawankey, S. Zwischenberichterstattung im IGF-Cluster Low Friction Powertrain (LFP) des Teilprojektes M1.2: Bedarfsgerechte Kolbenkühlung; FVV FVA, Frankfurt, 2011.

    Google Scholar 

  33. Pflaum, W.; Mollenhauer, K. Wärmeübergang in der Verbrennungskraftmaschine, 1st ed. 1977; Springer Vienna; Imprint: Springer: Vienna, 1977, ISBN 9783709184530.

    Google Scholar 

  34. Kehren, C., Henaux, D., Hermsen, FG., Ortlieb, P. How toHybrid –Anwendung des digitalen Reibungsabschätzungstools FRET im Entwicklungs-Frontloading. Liebl, J. (eds) Experten-Forum Powertrain: Reibung in Antrieb und Fahrzeug 2020. Springer Vieweg, Berlin, Heidelberg; pp 75–116.

    Google Scholar 

  35. Bennion, K.; Moreno, G. Convective Heat Transfer Coefficients of Automatic Transmission Fluid Jets With Implications for Electric Machine Thermal Management. In ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, July 6–9, 2015, San Francisco, California, USA. ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, San Francisco, California, USA, 06–09 Jul. 2015; American Society of Mechanical Engineers: New York, 2015, ISBN 978-0-7918-5690-1.

    Google Scholar 

  36. Fanger, P.O. Thermal Comfort: Analysis and applications in environmental engineering, Reprint; Krieger: Malabar, Fla., 1982, ISBN 0898744466.

    Google Scholar 

  37. ASHRAE. ANSI/ASHRAE Addendum d to ANSI/ASHRAE Standard 55-2017: Thermal Environmental Conditions for Human Occupancy 2017.

    Google Scholar 

  38. Baumgarten, H.; Scharf, J.; Thewes, M.; Uhlmann, T.; Balazs, A.; Böhmer, M. Simulation-Based Development Methodology for Future Emission Legislation. 37. Internationales Wiener Motorensymposium 28. – 29. April 2016, H. P. Lenz, Ed., 1st ed., 2016, 209–231.

    Google Scholar 

  39. Thewes, M.; Balazs, A.; Yadla, S.K.; Walter, V.; Görgen, M.; Scharf, J.; Sterlepper, S.; Voßhall, T. Zero-Impact combustion engine. 28. Aachen Colloquium Sustainable Mobility. October 7th–9th 2019.

    Google Scholar 

  40. Dorscheidt, F.; Sterlepper, S.; Görgen, M.; Nijs, M.; Claßen, J.; Yadla, S.K.; Maurer, R.; Pischinger, S.; Krysmon, S.; Abdelkader, A. Gasoline Particulate Filter Characterization Focusing on the Filtration Efficiency of Nano-Particulates Down to 10 nm; SAE Technical Paper 2020-01-2212, 2020. Available online: https://www.sae.org/publications/technical-papers/content/2020-01-2212/.

  41. Maurer, R.; Theodoros, K.; Sterlepper, S.; Günther, M.; Pischinger, S. Final report: Zero-Impact Tailpipe Emission Powertrains (ZITE), FVV F 1412; FVV-Informationstagung R604, 2023.

    Google Scholar 

  42. Böhmer, M. Simulation of exhaust emissions for hybrid vehicles considering real driving conditions. PhD Thesis; RWTH Aachen University, Aachen, 2017.

    Google Scholar 

  43. Maurer, R.; Theodoros, K.; Sterlepper, S.; Günther, M.; Pischinger, S. Achieving Zero-Impact Emissions with a Gasoline Passenger Car. Atmosphere 2023, 14, 313, doi: https://doi.org/10.3390/atmos14020313.

    Article  Google Scholar 

  44. European Commission. Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on type-approval of motor vehicles and engines and of systems, components and separate technical units intended for such vehicles, with respect to their emissions and battery durability (Euro 7) and repealing Regulations (EC) No 715/2007 and (EC) No 595/2009. 2022/0365 (COD) 2022.

    Google Scholar 

  45. European Commission. ANNEXES to the Proposal for a Regulation of the European Parliament and the Council on type-approval of motor vehicles and engines and of systems, components and separate technical units intended for such vehicles, with respect to their emissions and battery durability (Euro 7) and repealing Regulations (EC) No 715/2007 and (EC) No 595/2009. ANNEXES 1 to 6 2022.

    Google Scholar 

  46. Stalp, A.; Heinz, A. Soot Formation at DI Gasoline Engines: Systemic analysis of the soot formation at gasoline engines, FVV 1282. Final report 1223, Frankfurt am Main, 2021.

    Google Scholar 

  47. Abel, D. Regelungstechnik und Ergänzungen (Höhere Regelungstechnik): Umdruck zur Vorlesung, 41. Auflage; Verlag Mainz: Aachen, 2017, ISBN 3810700673.

    Google Scholar 

  48. Sun, C.; Moura, S.J.; Hu, X.; Hedrick, J.K.; Sun, F. Dynamic Traffic Feedback Data Enabled Energy Management in Plug-in Hybrid Electric Vehicles. IEEE Trans. Contr. Syst. Technol. 2015, 23, 1075–1086, doi: https://doi.org/10.1109/tcst.2014.2361294.

    Article  Google Scholar 

  49. Fleming, P.J. and Pursehouse, R.C. Genetic Algorithms in Control Systems Engineering.

    Google Scholar 

  50. Du, X.; Htet, K.K.K.; Tan, K.K. Development of a Genetic-Algorithm-Based Nonlinear Model Predictive Control Scheme on Velocity and Steering of Autonomous Vehicles. IEEE Trans. Ind. Electron. 2016, 63, 6970–6977, doi: https://doi.org/10.1109/tie.2016.2585079.

    Article  Google Scholar 

  51. Peters, J.; Peña Cruz, A.; Weil, M. Exploring the Economic Potential of Sodium-Ion Batteries. Batteries 2019, 5, 10, doi: https://doi.org/10.3390/batteries5010010.

    Article  Google Scholar 

  52. Dhaussy, F.; Truong Canh, J.; Raynaud, Y.; El Mejdoubi, A. High Power Battery Systems for Mild-Hybrid with Sodium-ion cobalt free technology. 31st Aachen Colloquium Sustainable Mobility 2022. Aachen, October 10th to 12th 2022, Paper No. 05. ISBN: 978-3-00-072524-1.

    Google Scholar 

  53. Spengler, R.; Essers, U. Einsatzmöglichkeiten von Kunststoff-Teilkapseln an Verbrennungsmotoren. MTZ Motortech Z 1999, 60, 164–170, doi: https://doi.org/10.1007/BF03226499.

    Article  Google Scholar 

  54. Röchling Automotive SE & Co. KG. Motorkapselungen 2010.

    Google Scholar 

  55. Röchling Automotive SE & Co. KG. Boost your efficiency: Kompetenzbroschüre 2022.

    Google Scholar 

  56. Röchling Automotive SE & Co. KG. Leichte Kapselung hält Motor länger auf Betriebstemperatur. Lightweight Des 2013, 6, 8, doi: https://doi.org/10.1365/s35725-013-0292-7.

  57. DLR. DuoTherm: Kombinierter thermischer Hochleistungsspeicher für mobile Anwendungen.

    Google Scholar 

  58. Kraft, W.; Altstedde, M.K. Use of metallic Phase Change Materials (mPCM) for heat storage in Electric- and Hybrid Vehicles. In 6th Hybrid and Electric Vehicles Conference (HEVC 2016). 6th Hybrid and Electric Vehicles Conference (HEVC 2016), London, UK, 2–3 Nov. 2016; Institution of Engineering and Technology, 2016; 14 (6)–14 (6), ISBN 978-1-78561-294-7.

    Google Scholar 

  59. Continental AG. Elektrisch beheizbarer Katalysator von Continental unterstützt CO2-sparende 48 V-Hybridstrategien. Available online: https://www.continental.com/de/presse/pressemitteilungen/2015-08-20-volt-e-kat/ (accessed on 26 October 2022).

  60. Maurer, R., Yadla, S.K., Balazs, A., Thewes, M., Walter, V., Uhlmann, T. Designing Zero Impact Emission Vehicle Concepts. Liebl, J. (eds) Experten-Forum Powertrain: Reibung in Antrieb und Fahrzeug 2020. Springer Vieweg, Berlin, Heidelberg; pp 75–116.

    Google Scholar 

Download references

Acknowledgement

This report is the scientific result of a research project undertaken by the FVV eV and performed by the Chair of Thermodynamics of Mobile Energy Conversion Systems (tme) at RWTH Aachen University under the direction of Univ.-Prof. Dr.-Ing. (USA) Stefan Pischinger.

The authors would like to acknowledge the self-financed funding received from the FVV no. 1433 “Highly-flexible internal combustion engines for hybrid vehicles” (HyFlex-ICE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jannik Kexel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kexel, J., Müller, J., Günther, M., Pischinger, S. (2023). HyFlex-ICE: Highly Flexible Internal Combustion Engines for Hybrid Vehicles. In: Kulzer, A.C., Reuss, HC., Wagner, A. (eds) 23. Internationales Stuttgarter Symposium. ISSYM 2023. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-42048-2_18

Download citation

Publish with us

Policies and ethics