Skip to main content

Comparison: Equations in Mathematics and Physics Education

  • Chapter
  • First Online:
Comparison of Mathematics and Physics Education II

Abstract

Today, equations are one of the main linking points between mathematics and physics. This term describes a logical proposition concerning the equality between two expressions. This chapter will discuss and compare the mathematics and physics educational perspectives on the concept of equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The definitions of “equation” differ slightly depending on the source and especially the language. In English, any equality (like 1 = 1) is called an equation, while an equation (“équation,” see www.larousse.fr) in France has to have at least one variable (Marcus & Watt, 2012). Here we consider every equality to be an equation.

  2. 2.

    For the case \(\left( {x + y} \right)^{2} = x^{2} + 2xy + y^{2}\) of the binomial theorem, 3 equations in particular are learned in Germany as “kept in memory,” so to speak.

    1. 1.

      \(\left( {a + b} \right)^{2} = a^{2} + 2ab + b^{2}\)

    2. 2.

      \(\left( {a - b} \right)^{2} = a^{2} - 2ab + b^{2}\)

    3. 3.

      \(\left( {a + b} \right) \cdot \left( {a - b} \right) = a^{2} - b^{2}\)

  3. 3.

    https://www.nctm.org/Classroom-Resources/Illuminations/Interactives/Algebra-Tiles/

  4. 4.

    In addition, in physics, vector quantities—such as gravitational force F and gravitational acceleration g—are often represented in scalar form, but treated in vector form.

References

  • Bauersfeld, H. (1983). Subjektive Erfahrungsbereiche als Grundlage einer Interaktionstheorie des Mathematiklernens und –lehrens [Subjective Fields of experience as the basis of an interaction theory of mathematics learning and teaching]. In H. Bauersfeld, H. Bussmann, & G. Krummheuer (Eds.), Lernen und Lehren von Mathematik. Analysen zum Unterrichtshandeln II (pp. 1–57). Köln: Aulis-Verlag Deubner.

    Google Scholar 

  • Bauersfeld, H. (1988). Interaction, construction, and knowledge: Alternative perspectives for mathematics education. In D. A. Grouws & T. J. Cooney (Eds.), Perspectives on research on effective mathematics teaching (pp. 27–46). Erlbaum.

    Google Scholar 

  • Burscheid, J., & Struve, H. (2020). Mathematikdidaktik in Rekonstruktionen. Grundlegung von Unterrichtsinhalten [Mathematics education in reconstructions. Foundation of teaching contents]. Springer. https://doi.org/10.1007/978-3-658-29452-6.

  • Buschhüter, D., Spoden, C., & Borowsko, A. (2016). Mathematische Kenntnisse und Fähigkeiten von Physikstudierenden zu Studienbeginn [Mathematical knowledge and skills of physics students at the beginning of their studies]. Zeitschrift Für Didaktik Der Naturwissenschaften, 22, 61–75. https://doi.org/10.1007/s40573-016-0041-4.

    Article  Google Scholar 

  • Dilling, F., Holten, K., & Krause, E. (2019, online first). Explikation möglicher inhaltlicher Forschungsgegenstände für eine Wissenschaftskollaboration der Mathematikdidaktik und Physikdidaktik – Eine vergleichende Inhaltsanalyse aktueller deutscher Handbücher und Tagungsbände [Explication of possible research topics for a scientific collaboration in mathematics education and physics education – A comparative content analysis of current German Handbooks and conference proceedings]. Mathematica Didactica. From http://www.mathematica-didactica.com/Pub/md_2019/md_2019_Dilling_Holten_Krause.pdf.

  • Dilling, F., & Witzke, I. (2020, online first). The use of 3D-printing technology in calculus education – Concept formation processes of the concept of derivative with printed graphs of functions. Digital Experiences in Mathematics Education. https://doi.org/10.1007/s40751-020-00062-8.

  • Fetzer, M., & Tiedemann, K. (2017). Talking with objects. CERME 10, Feb 2017, Dublin, Ireland.

    Google Scholar 

  • Galili, I. (2018). Physics and mathematics as interwoven disciplines in science education. Science & Education, 27, 7–27. https://doi.org/10.1007/s11191-018-9958-y

    Article  Google Scholar 

  • Griesel, H., Postel, H., & Suhr, F. (Eds.) (2007). Elemente der Mathematik. Niedersachsen, 8. Schuljahr [Elements of mathematics. Lower Saxony. 8th grade]. Westermann Schroedel Dieserweg. ISBN 9783507872080.

    Google Scholar 

  • Hohmann, S. (2021). Calculating the distributions of number, mass and luminosity with the help of MS Excel. European Journal of Physics, 42, 015601. https://doi.org/10.1088/1361-6404/abb297.

  • Karam, R., & Krey, O. (2015). Quod erat demonstrandum: Understanding and explaining equations in physics teacher education. Science & Education, 24, 661–698. https://doi.org/10.1007/s11191-015-9743-0.

    Article  Google Scholar 

  • Karam, R., Uhden, O., & Höttecke, D. (2016). Das habt ihr schon in Mathe gelernt! Stimmt das wirklich? [You already learned this in Mathematics! Is this really true?]. Unterricht Physik, 153(154), 22–27.

    Google Scholar 

  • Kim, E., & Pak, S.-J. (2002). Students do not overcome conceptual difficulties after solving 1000 traditional problems. American Journal of Physics, 70, 759–765. https://doi.org/10.1119/1.1484151.

    Article  Google Scholar 

  • Kim, M., Cheong, Y., & Song, J. (2018). The meanings of physics equations and physics education. Journal of the Korean Physical Society, 73, 145–151. https://doi.org/10.3938/jkps.73.145.

    Article  Google Scholar 

  • Krause, F., & Reiners-Logotheidou, A. (1978). Kenntnisse und Fähigkeiten naturwissenschaftlich orientierter Studienanfänger in Physik und Mathematik. Die Ergebnisse des bundesweiten Studieneingangstests Physik 1978 [Knowledge and skills of science-oriented first-year students in physics and mathematics. The results of the nationwide Physics Entrance Test 1978]. University of Bonn.

    Google Scholar 

  • Leitze, A. R., & Kitt, N. A. (2000). Using homemade algebra tiles to develop algebra and prealgebra concepts. Mathematics Teacher, 2000, 462–520. https://doi.org/10.5951/MT.93.6.0462.

    Article  Google Scholar 

  • Marcus, S., & Watt, S. M. (2012). What is an equation? 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 23–29. https://doi.org/10.1109/SYNASC.2012.79.

  • Pietrocola, M. (2008). Mathematics as structural language of physical thought. In M. Vicentini & E. Sassi (Eds.), Connecting research in physics education with teacher education (Vol. 2). International Commission on Physics Education. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.549.2915&rep=rep1&type=pdf.

  • NCTM. (2020, 8. November). Illuminations. Algebra tiles. https://www.nctm.org/Classroom-Resources/Illuminations/Interactives/Algebra-Tiles/.

  • Pielsticker, F. (2020). Mathematische Wissensentwicklungsprozesse von Schülerinnen und Schülern Fallstudien zu empirisch-orientiertem Mathematikunterricht mit 3D-Druck [Students’ mathematical knowledge development processes: Case studies of empirical mathematics education with 3D printing]. Springer. https://doi.org/10.1007/978-3-658-29949-1.

  • Pospiech, G., Eylon, B., Bagno, E., Lehavi, Y., & Geyer, M.-A. (2015). The role of mathematics for physics teaching and understanding. GIREP-MPTL 2014. Teaching/Learning Physics: Integrating Research into Practice, 889–896. https://doi.org/10.1393/ncc/i2015-15110-6.

  • Redish, E., & Kuo, E. (2015). Language of physics, language of math: Disciplinary culture and dynamic epistemology. Science & Education, 24, 561–590. https://doi.org/10.1007/s11191-015-9749-7.

    Article  Google Scholar 

  • Schoenfeld, A. H. (1985). Mathematical problem solving. Academic.

    MATH  Google Scholar 

  • Sherin, B. L. (2001). How students understand physics equations. Cognition and Instruction, 19(4), 479–541. https://doi.org/10.1207/S1532690XCI1904_3.

    Article  Google Scholar 

  • Tuminaro, J., & Redish, E. (2007). Elements of a cognitive model of physics problem solving: Epistemic games. Physical Review Special Topics: Physics Education Research, 3, 020101. https://doi.org/10.1103/PhysRevSTPER.3.020101.

  • Wittmann, E. C., & Malle, G. (1993). Didaktische Probleme der elementaren Algebra [Problems of elementary algebra in mathemtics education]. Springer. https://doi.org/10.1007/978-3-322-89561-5.

  • Witzke, I. (2015). Different understandings of mathematics. An epistemological approach to bridge the gap between school and university mathematics. ESU, 7, 304–322.

    Google Scholar 

  • Vom Hofe, R. (1995). Grundvorstellungen mathematischer Inhalte [Basic ideas of mathematical content]. Spektrum.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felicitas Pielsticker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hohmann, S., Pielsticker, F. (2022). Comparison: Equations in Mathematics and Physics Education. In: Dilling, F., Kraus, S.F. (eds) Comparison of Mathematics and Physics Education II. MINTUS – Beiträge zur mathematisch-naturwissenschaftlichen Bildung. Springer Spektrum, Wiesbaden. https://doi.org/10.1007/978-3-658-36415-1_7

Download citation

Publish with us

Policies and ethics