Skip to main content

Smart Devices als Assistive Technologien

  • Chapter
  • First Online:
Assistive Technologien im Sozial- und Gesundheitssektor

Part of the book series: Gesundheit. Politik - Gesellschaft - Wirtschaft ((GEPOGEWI))

Zusammenfassung

Smart Devices wie Smartphones oder Tablets sind heutzutage ein elementarer und unverzichtbarer Bestandteil des täglichen Lebens. Durch eine Vielzahl an installierbaren Apps zählen diese Geräte zu den assistiven Technologien und erleichtern den Alltag. Zusätzlich zu Smartphones und Tablets gibt es weitere, weniger verbreitete digitale Technologien, wie Fitness- und Gesundheitstracker, Smartwatches und smarte Brillen. Zu diesen digitalen assistiven Technologien wird im Überblick der technische Hintergrund und die eingesetzte Sensorik vorgestellt und es werden mögliche Einsatzszenarien und Anwendungsmöglichkeiten in Rehabilitation und Therapie aufgezeigt. Weiterhin werden Grundlagen zu Augmented Reality (AR) und Virtual Reality (VR) erläutert und es werden Beispiele aufgezeigt, wie diese Technologien zukünftig mit dem Smartphone oder einer smarten Brille eingesetzt werden können.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ausführliche Darstellungen zu den rechtlichen Rahmenbedingungen finden sich in den Kapiteln von Bremert und Hansen, bzw. Bieresborn in diesem Band.

Literatur

  • Anthes, C., García-Hernández, R. J., Wiedemann, M., & Kranzlmüller, D. (2016). State of the art of virtual reality technology. 2016 IEEE Aerospace Conference, (S. 1–19). https://doi.org/10.1109/AERO.2016.7500674

  • de Arriba-Pérez, F., Caeiro-Rodríguez, M. & Santos-Gago, J.M. (2018). How do you sleep? Using off the shelf wrist wearables to estimate sleep quality, sleepiness level, chronotype and sleep regularity indicators. J Ambient Intell Human Comput 9, (S. 897–917). https://doi.org/10.1007/s12652-017-0477-5

  • Becker, K., & Stammer, Y. (2017). Sensorbasierte Gesundheitsservices für mehr Fitness im Alltag. In S. Müller-Mielitz & T. Lux (Hrsg.), E-Health-Ökonomie, (S. 501–516). Springer Fachmedien. https://doi.org/10.1007/978-3-658-10788-8_26

  • BfArM. (2021). DiGA-Verzeichnis. Antworten zur Nutzung von DiGA. https://diga.bfarm.de/. Zugegriffen: 28.02.2021

  • Blum, A., Bosch, S., Haenssle, H.A. et al. (2020). Künstliche Intelligenz und Smartphone-Programm-Applikationen (Apps). Hautarzt 71, (S. 691–698). https://doi.org/10.1007/s00105-020-04658-4

  • BSI. (2021). Cyber-Sicherheitsbetrachtung vernetzter Medizinprodukte – BSI-Projekt 392: Manipulation von Medizinprodukten (ManiMed). https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/DigitaleGesellschaft/ManiMed_Abschlussbericht.html. Zugegriffen: 28.02.2021

  • Bush, J. (2008). Viability of virtual reality exposure therapy as a treatment alternative. Computers in Human Behavior, 24(3), (S. 1032–1040). https://doi.org/10.1016/j.chb.2007.03.006

  • Cassar, L. B., & Inguanez, F. (2018). ARC: Augmented Reality for Catering. 2018 IEEE 8th International Conference on Consumer Electronics – Berlin (ICCE-Berlin), (S. 1–5). https://doi.org/10.1109/ICCE-Berlin.2018.8576165

  • Choudhry, N. A., Rasheed, A., Ahmad, S., Arnold, L., & Wang, L. (2020). Design, development and characterization of textile stitch-based piezoresistive sensors for wearable monitoring. IEEE Sensors Journal, 20(18), (S. 10485–10494). https://doi.org/10.1109/JSEN.2020.2994264

  • Crema, C., Depari, A., Flammini, A., Sisinni, E., Vezzoli, A., & Bellagente, P. (2017). Virtual respiratory rate sensors: An example of a smartphone-based integrated and multiparametric mHealth gateway. IEEE Transactions on Instrumentation and Measurement, 66(9), (S. 2456–2463). https://doi.org/10.1109/TIM.2017.2707838

  • De, D., Bharti, P., Das, S. K., & Chellappan, S. (2015). Multimodal wearable sensing for fine-grained activity recognition in healthcare. IEEE Internet Computing, 19(5), (S. 26–35). https://doi.org/10.1109/MIC.2015.72

  • Eichelbaum, F. (2014). Eyeware: Project Glass und die Zukunft von Smartphones. https://doi.org/10.17169/FUDOCS_document_000000021277

  • Garcia-Ceja, E., Osmani, V., and Mayora, O. (2016). Automatic stress detection in working environments from smartphones’ accelerometer data: A first step. IEEE Journal of Biomedical and Health Informatics, 20(4), (S. 1053–1060). https://doi.org/10.1109/JBHI.2015.2446195

  • Goyal, R., Dragoni, N., and Spognardi, A. (2016). Mind the tracker you wear: A security analysis of wearable health trackers. In Proceedings of the 31st Annual ACM Symposium on Applied Computing, SAC’16, (S. 131–136), New York, NY, USA. ACM. https://doi.org/10.1145/2851613.2851685

  • Guan, Y., Zheng, L., & Tian, J. (2010). Real-time speaker adapted speech to speech translation system in mobile environment. IEEE 10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, (S. 577–580). https://doi.org/10.1109/ICOSP.2010.5656047

  • Haufe, S., Kerling, A., Protte, G., Bayerle, P., Stenner, H. T., Rolff, S., Sundermeier, T., Kück, M., Ensslen, R., Nachbar, L., Lauenstein, D., Böthig, D., Bara, C., Hanke, A. A., Terkamp, C., Stiesch, M., Hilfiker-Kleiner, D., Haverich, A., & Tegtbur, U. (2019). Telemonitoring-supported exercise training, metabolic syndrome severity, and work ability in company employees: a randomised controlled trial. The Lancet. Public health, 4(7), (S. 343–352). https://doi.org/10.1016/S2468-2667(19)30075-1

  • Heitkamp, H. (2016). Wearables – Die Bedeutung der neuen Technologie für die Sportmedizin. Deutsche Zeitschrift für Sportmedizin, 2016(12), (S. 285–286). https://doi.org/10.5960/dzsm.2016.260

  • Heo, J., Yoon, H., & Park, K. S. (2017). A novel wearable forehead EOG measurement system for human computer interfaces. Sensors (Basel, Switzerland), 17(7). https://doi.org/10.3390/s17071485

  • Kher Chaitrali, S., Dabhade Yogita, A., Kadam Snehal, K., Dhamdhere Swati, D., & Deshpande Aarti, V. (2015). An intelligent walking stick for the blind. International Journal of Engineering Research and General Science, 3(1), 1057–1062.

    Google Scholar 

  • Konferenz der unabhängigen Datenschutzaufsichtsbehörden des Bundes und der Länder, DSK (2020) Das Standard-Datenschutzmodell – Eine Methode zur Datenschutzberatung und -prüfung auf der Basis einheitlicher Gewährleistungsziele, Version 2.0b. https://www.datenschutz-mv.de/datenschutz/datenschutzmodell/. Zugegriffen: 28.02.2021

  • Lee, C., Lee, K. & Lee, D. (2017). Mobile healthcare applications and gamification for sustained health maintenance. Sustainability, 9 (5), (S. 772). https://doi.org/10.3390/su9050772

  • Lee, Y., Yeh, H., Kim, K.-H., & Choi, O. (2018). A real-time fall detection system based on the acceleration sensor of smartphone. International Journal of Engineering Business Management, 10, 1847979017750669. https://doi.org/10.1177/1847979017750669

    Article  Google Scholar 

  • Li, G., Lee, B., & Chung, W. (2015). Smartwatch-based wearable EEG system for driver drowsiness detection. IEEE Sensors Journal, 15(12), (S. 7169–7180). https://doi.org/10.1109/JSEN.2015.2473679

  • Liang, Z., & Nishimura, T. (2017). Are wearable EEG devices more accurate than fitness wristbands for home sleep tracking? Comparison of consumer sleep trackers with clinical devices. 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE), (S. 1–5). https://doi.org/10.1109/GCCE.2017.8229188

  • Lin, Y., Lai, Y., Chang, H., Tsao, Y., Chang, Y., & Chang, R. Y. (2018). SmartHear: A smartphone-based remote microphone hearing assistive system using wireless technologies. IEEE Systems Journal, 12(1), (S. 20–29). https://doi.org/10.1109/JSYST.2015.2490104

  • Llamas, R., Ubrani, J., & Shirer, M. (2020). Worldwide wearables market forecast to maintain double-digit growth in 2020 and through 2024, according to IDC. IDC: The Premier Global Market Intelligence Company. https://www.idc.com/getdoc.jsp?containerId=prUS46885820. Zugegriffen: 28.02.2021

  • Ma, Y., Xu, B., Bai, Y., Sun, G., & Zhu, R. (2012). Daily mood assessment based on mobile phone sensing. 2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks, (S. 142–147). https://doi.org/10.1109/BSN.2012.3

  • Maamari, R. N., Keenan, J. D., Fletcher, D. A., & Margolis, T. P. (2014). A mobile phone-based retinal camera for portable wide field imaging. The British Journal of Ophthalmology, 98(4), (S. 438–441). https://doi.org/10.1136/bjophthalmol-2013-303797

  • Majumder, S., & Deen, M. J. (2019). Smartphone sensors for health monitoring and diagnosis. Sensors, 19(9), (S. 2164ff). https://doi.org/10.3390/s19092164

  • Martin N., Friedewald M., Schiering I., Mester B., Hallinan D., Jensen M. (2020), Die Datenschutz-Folgenabschätzung nach Art. 35 DSGVO: Ein Handbuch für die Praxis, Fraunhofer-Verlag, Stuttgart. http://publica.fraunhofer.de/documents/N-586394.html

  • Meidert, U., Scheermesser, M., Prieur, Y., Hegyi, S., Stockinger, K., Eyyi, G., Evers-Wölk, M., Jacobs, M., Oertel, B., & Becker, H. (2018). Quantified Self—Schnittstelle zwischen Lifestyle und Medizin (TA-SWISS, Hrsg.). vdf. https://doi.org/10.3218/3892-7

  • Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Trans. Information Systems, E77-D, Nr. 12, (S. 1321–1329).

    Google Scholar 

  • Miloff, A., Lindner, P., Hamilton, W., Reuterskiöld, L., Andersson, G., & Carlbring, P. (2016). Single-session gamified virtual reality exposure therapy for spider phobia vs. traditional exposure therapy: Study protocol for a randomized controlled non-inferiority trial. Trials, 17(1), (S. 60 ff). https://doi.org/10.1186/s13063-016-1171-1

  • Moro, C., Štromberga, Z., Raikos, A., & Stirling, A. (2017). The effectiveness of virtual and augmented reality in health sciences and medical anatomy: VR and AR in health sciences and medical anatomy. Anatomical Sciences Education, 10(6), (S. 549–559). https://doi.org/10.1002/ase.1696

  • Murakami, H., Kawakami, R., Nakae, S., Yamada, Y., Nakata, Y., Ohkawara, K., Sasai, H., Ishikawa-Takata, K., Tanaka, S., & Miyachi, M. (2019). Accuracy of 12 wearable devices for estimating physical activity energy expenditure using a metabolic chamber and the doubly labeled water method: validation study. JMIR mHealth and uHealth, 7(8), e13938. https://doi.org/10.2196/13938

    Article  Google Scholar 

  • Papageorgiou, A., Strigkos, M., Politou, E., Alepis, E., Solanas, A., and Patsakis, C. (2018). Security and privacy analysis of mobile health applications: The alarming state of practice. IEEE Access, 6, (S. 9390–9403). https://doi.org/10.1109/ACCESS.2018.2799522

  • Seifert, A., Schlomann, A., Rietz, C., & Schelling, H. R. (2017). The use of mobile devices for physical activity tracking in older adults’ everyday life. DIGITAL HEALTH. https://doi.org/10.1177/2055207617740088

    Article  Google Scholar 

  • Siani, A., & Marley, S. A. (2021). Impact of the recreational use of virtual reality on physical and mental wellbeing during the Covid-19 lockdown. Health and Technology. https://doi.org/10.1007/s12553-021-00528-8

  • Stafford, M., Lin, F., & Xu, W. (2016). Flappy breath: A smartphone-based breath exergame. 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), (S. 332–333). https://doi.org/10.1109/CHASE.2016.70

  • Vaghefi, I. & Tulu, B. (2019). The continued use of mobile health apps: Insights from a longitudinal study. JMIR mHealth uHealth, 7 (8), (S. 12983 ff). https://doi.org/10.2196/12983

  • Voss, C., Washington, P., Haber, N., Kline, A., Daniels, J., Fazel, A., De, T., McCarthy, B., Feinstein, C., Winograd, T., & Wall, D. (2016). Superpower glass: Delivering unobtrusive real-time social cues in wearable systems. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, (S. 1218–1226). https://doi.org/10.1145/2968219.2968310

  • Yu, J., Zhang, Y., Ye, Y., DiSanto, R., Sun, W., Ranson, D., Ligler, F. S., Buse, J. B., & Gu, Z. (2015). Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proceedings of the National Academy of Sciences,112(27), (S. 8260–8265). https://doi.org/10.1073/pnas.1505405112

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ina Schiering .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lorenz, T., Pleger, M., Schiering, I. (2022). Smart Devices als Assistive Technologien. In: Luthe, EW., Müller, S.V., Schiering, I. (eds) Assistive Technologien im Sozial- und Gesundheitssektor. Gesundheit. Politik - Gesellschaft - Wirtschaft. Springer VS, Wiesbaden. https://doi.org/10.1007/978-3-658-34027-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-34027-8_2

  • Published:

  • Publisher Name: Springer VS, Wiesbaden

  • Print ISBN: 978-3-658-34026-1

  • Online ISBN: 978-3-658-34027-8

  • eBook Packages: Social Science and Law (German Language)

Publish with us

Policies and ethics