Skip to main content

Semantic Segmentation of Solid-State LiDAR Measurements for Automotive Applications

  • Conference paper
  • First Online:
21. Internationales Stuttgarter Symposium

Part of the book series: Proceedings ((PROCEE))

  • 2519 Accesses

Abstract

For autonomous cars it is crucial to perceive its current environment to ensure safe driving maneuvers. Light detection and ranging sensors (LiDAR) are often used for object detection due to their accurate distance measurements. However, point clouds sensed by LiDAR provide information of the environment which are not important for object detection algorithms (e.g.: vegetation, buildings). Adding semantic segmentation information to the point cloud supports object detection algorithms and improves their performance.

Within this work we transfer well established semantic segmentation methods from the image domain to point clouds and evaluate the performance on solid state LiDAR data. We successfully show the applicability of semantic segmentation methods on this new sensor technology. Furthermore, we compare semantic segmentation approaches which operate on different input representations and discuss the benefit of additional information like intensity measurements on the algorithm’s performance. The evaluations are conducted on solid state LiDAR measurements from German highway scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nitsch, J. et al.: 3d ground point classification for automotive scenarios. In: 2018 21 st International Conference on Intelligent Transportation Systems (ITSC), pp. 2603–2608. IEEE (2018)

    Google Scholar 

  2. Douillard, B. et al.: On the segmentation of 3d lidar point clouds. In: International Conference on Robotics and Automation (ICRA), pp. 2798–2805. IEEE (2011)

    Google Scholar 

  3. Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: Rangenet++: Fast and accurate lidar semantic segmentation. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2019)

    Google Scholar 

  4. Qi, C., Su, R., Mo, H., Guibas, K., Pointnet, L. J.: Deep learning on point sets for 3d classification and segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  5. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3d shape recognition. Proceedings of the IEEE international conference on computer vision, pp. 945–953 (2015)

    Google Scholar 

  6. Velas, M., Spanel, M., Hradis, M., Herout, A.: Cnn for very fast ground segmentation in velodyne lidar data. In: 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 97–103. IEEE (2018)

    Google Scholar 

  7. Maturana, D., Scherer, S.: Voxnet: A 3d convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. IEEE (2015)

    Google Scholar 

  8. Zhou, Y., Tuzel, O.: Voxelnet: End-to-end learning for point cloud based 3d object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490–4499 (2018)

    Google Scholar 

  9. Huang, J., You, S.: Point cloud labeling using 3d convolutional neural network. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2670–2675. IEEE (2016)

    Google Scholar 

  10. Riegler, G., Osman Ulusoy, A., Geiger, A.: Octnet: Learning deep 3d representations at high resolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3577–3586 (2017)

    Google Scholar 

  11. Wang, P.-S., Liu, Y., Guo, Y.-X., Sun, C.-Y., Tong, X.: O-cnn: Octree-based convolutional neural networks for 3d shape analysis. ACM Transactions on Graph (TOG) 36, 72 (2017)

    Google Scholar 

  12. Qi, C.R., Yi, L., Su, H., Guibas, L. J.: Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In: Advances in neural information processing systems, pp. 5099–5108 (2017)

    Google Scholar 

  13. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440 (2015)

    Google Scholar 

  14. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE transactions on pattern analysis machine intelligence 39, 2481–2495 (2017)

    Article  Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention, pp. 234–241. Springer, Cham (2015)

    Google Scholar 

  16. Milletari, F., Navab, N., Ahmadi, S.-A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  17. Stanislas, L. et al.: Airborne particle classification in lidar point clouds using deep learning. Keio University (2019).

    Google Scholar 

  18. Stanislas, L. et al.: Airborne particle classification in lidar point clouds using deep learning. In: Field and Service Robotics (pp. 395–410). Springer, Singapore (2019, September)

    Google Scholar 

  19. Shen, C. et al.: On the influence of dice loss function in multi-class organ segmentation of abdominal ct using 3d fully convolutional networks. arXiv preprint arXiv:1801.05912 (2018).

  20. Nishida, N., Nakayama, H.: Multimodal gesture recognition using multi-stream recurrent neural network. In: Image and Video Technology, pp. 682–694. Springer, Cham (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sören Erichsen or Julia Nitsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Erichsen, S., Nitsch, J., Schmidt, M., Schlaefer, A. (2021). Semantic Segmentation of Solid-State LiDAR Measurements for Automotive Applications. In: Bargende, M., Reuss, HC., Wagner, A. (eds) 21. Internationales Stuttgarter Symposium. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-33466-6_27

Download citation

Publish with us

Policies and ethics