Skip to main content

Preheating components with metal hydrides or lime – Small, high power, no additional energy

  • Conference paper
  • First Online:
20. Internationales Stuttgarter Symposium

Part of the book series: Proceedings ((PROCEE))

  • 2841 Accesses

Zusammenfassung

Operation temperature of vehicle components in internal combustion engines is far above ambient temperature, in particular compared to winter ambient temperatures of down to -20 °C. At the cold start phase at the beginning of a driving cycle, the systems’ performance is highly inefficient, which leads to increased pollutants (NOx, CO, HC) and degradation of the components. 60-80% of all pollutants of the whole driving cycle are generated during this cold start phase. It takes several minutes until the system reaches operation temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. J. D. Trapy and P. Damiral, “An Investigation of Lubricating System Warm-up for the Improvement of Cold Start Efficiency and Emissions of S.I. Automotive Engines,” (in English), SAE technical paper, 1990.

    Google Scholar 

  2. M. S. Reiter and K. M. Kockelman, “The problem of cold starts: A closer look at mobile source emissions levels,” Transportation Research Part D: Transport and Environment, vol. 43, pp. 123-132, 2016.

    Google Scholar 

  3. R. Cipollone, D. Di Battista, and M. Mauriello, “Effects of oil warm up acceleration on the fuel consumption of reciprocating internal combustion engines,” Energy Procedia, vol. 82, pp. 1-8, 2015.

    Google Scholar 

  4. A. Roberts, R. Brooks, and P. Shipway, “Internal combustion engine cold-start efficiency: A review of the problem, causes and potential solutions,” Energy Conversion and Management, vol. 82, pp. 327-350, 2014.

    Google Scholar 

  5. G. Andrews, A. Ounzain, H. Li, M. Bell, J. Tate, and K. Ropkins, “The use of a water/lube oil heat exchanger and enhanced cooling water heating to increase water and lube oil heating rates in passenger cars for reduced fuel consumption and CO2 emissions during cold start.,” SAE technical paper, vol. 2007-01-2067, 2007.

    Google Scholar 

  6. H. Li et al., “Study of Thermal Characteristics and Emissions during Cold Start using an on-board Measuring Method for Modern SI Car Real World Urban Driving,” (in English), SAE Int J Engines, 2008.

    Google Scholar 

  7. M. Dieterich, I. Bürger, and M. Linder, “Open and closed metal hydride system for high thermal power applications: Preheating vehicle components,” International Journal of Hydrogen Energy, vol. 42, no. 16, pp. 11469-11481, 2018 2017.

    Google Scholar 

  8. M. Kölbig, “Coupled metal hydride reactions for preheating vehicle components at low temperatures,” ed, 2018.

    Google Scholar 

  9. P. M. Golben, D. DaCosta, and G. Sandrock, “Hydride-based cold-start heater for automotive catalyst,” Journal of Alloys and Compounds, vol. 253-254, pp. 686-688, 1997.

    Google Scholar 

  10. 10. D. H. Dacosta, M. Golben, and D. C. Tragna, “Metal hydride systems for the hydrogen planet,” in Proceedings of the 14th World Hydrogen Energy Conference, R. D. Ventor, T. F. Bose, and N. Veziroglu, Eds., ed. Montreal: IAHE, 2002.

    Google Scholar 

  11. I.-S. Park, J.-K. Kim, K. J. Kim, J. Zhang, C. Park, and K. Gawlik, “Investigation of coupled AB5 type high-power metal hydride reactors,” International Journal of Hydrogen Energy, vol. 34, pp. 5770-5777, 2009.

    Google Scholar 

  12. Z. Z. Fang et al., “Metal hydrides based high energy density thermal battery,” Journal of Alloys and Compounds, vol. 645, pp. S184-S189, 2015.

    Google Scholar 

  13. F. Qin, J. Chen, M. Lu, Z. Chen, Y. Zhou, and K. Yang, “Development of a metal hydride refrigeration system as an exhaust gas-driven automobile air conditioner,” Renewable Energy, vol. 32, pp. 2034-2052, 2007.

    Google Scholar 

  14. K. Kunze, S. Wolff, I. Lade, and J. Tonhauser, “A systematic analysis of CO2-reduction by an optimized heat supply during vehicle warm-up,” SAE technical paper, 2006.

    Google Scholar 

  15. J. Mishler, Y. Wang, P. P. Mukherjee, R. Mukundan, and R. L. Borup, “Subfreezing operation of polymer electrolyte fuel cells: Ice formation and cell performance loss,” Electrochimica Acta, vol. 65, pp. 127-133, 2012.

    Google Scholar 

  16. M. Schmidt, A. Gutierrez, and M. Linder, “Thermochemical energy storage with CaO/Ca(OH)2 – Experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor,” Applied Energy, vol. 188, pp. 672-681, 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mila Kölbig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kölbig, M., Bürger, I., Schmidt, M., Linder, M. (2020). Preheating components with metal hydrides or lime – Small, high power, no additional energy. In: Bargende, M., Reuss, HC., Wagner, A. (eds) 20. Internationales Stuttgarter Symposium . Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-30995-4_44

Download citation

Publish with us

Policies and ethics