Skip to main content

The Mathematization of Physics Throughout History

  • Chapter
  • First Online:
Comparison of Mathematics and Physics Education I

Abstract

In mathematical education – for example in so-called modeling cycles – the keyword mathematization is often mentioned as a matter of course as if it were a fixed and generally comprehensible term (Winter, 2016). Occasionally mathematization is described as a translation into mathematics, but it is not clear when the border to mathematics is crossed. Is mathematization merely algebraization (in the sense of formalization) or is looking at a problem with a mathematical way of thinking already a kind of mathematization? In its contribution “The laws of the free fall of Galilei – an exemplary case of mathematization”, Winter has shown, using the example of Galilei indicates not only how demanding but also how stimulating a “real” mathematization of a physical problem can be. (Winter, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Biegel, G., Klein, A., & Sonar, T. ( (2008). Leonard Euler: Mathematiker, Mechaniker, Physiker.

    Google Scholar 

  • Bogoljubov, N. N., Logunov, A. A., & Todorov, I. T. (1975). Introduction to axiomatic quantum field theory. London u.a.: Benjamin.

    Google Scholar 

  • Carathéodory, C. (1909). Untersuchungen über die Grundlagen der Thermodynamik. Mathematische Annalen ; 67.

    Google Scholar 

  • Corry, L. (2018). Hilbert’s sixth problem: between the foundations of geometry and the axiomatization of physics. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 376(2118). https://doi.org/10.1098/rsta.2017.0221

  • Dellian, E., & Galilei, G. (Eds.). (2014). Discorsi: Unterredungen und mathematische Beweisführungen zu zwei neuen Wissensgebieten; (1) zur mechanischen Wechselwirkung aktiver Prinzipien mit passiver Materie (2) zur örtlichen Bewegung in Raum und Zeit nebst ihrer erzeugenden Ursache; mit einem Anhang über das gemeinsame Schwerezentrum mehrerer Körper; zum 450. Geburtstag als Festschrift für Galileo Galilei Linceo, Philosoph und erster Mathematiker des Großherzogs der Toskana. Berlin: Pro Business. Galilei, Galileo (VerfasserIn) Dellian, Ed (Hrsg.)

    Google Scholar 

  • Euler, L. (1736). Mechanica sive Motus scientia analytice exposita. Petropoli.

    Google Scholar 

  • Fruböse, C. V. (2010). Der ungeliebte Physikunterricht.. Ein Blick in die Fachliteratur und einige Anmerkungen aus der Praxis. Der mathematische und naturwissenschaftliche Unterricht, 63; Jg. 2010(7), 388–392.

    Google Scholar 

  • Galilei, G., & Blumenberg, H. H. (1965). Sidereus Nuncius = Nachricht von neuen Sternen; Sidereus nuncius dt (1. - 5. Tsd). Frankfurt am Main: Insel-Verlag.

    Google Scholar 

  • Helrich, C. S. (2017). Analytical Mechanics. Cham, Switzerland: Springer.

    Google Scholar 

  • Höttecke, D., & Rieß, F. (2017). Rekonstruktion der Vorstellungen von Physikstudierenden über die Natur der Naturwissenschaften – eine explorative Studie. PhyDid, 1–14.

    Google Scholar 

  • Kuhn, W. (2016). Ideengeschichte der Physik. https://doi.org/10.1007/978-3-662-47059-6

  • Lagrange, J. L. d., & Servus, H. (1887). Analytische Mechanik. Berlin.

    Google Scholar 

  • Militschenko, I., & Kraus, S. (2017). Entwicklungslinien der Mathematisierung der Physik – die Rolle der Deduktion in der experimentellen Methode. Der Mathematikunterricht, 63(5), 21–29.

    Google Scholar 

  • Simonyi, K. (1990). Kulturgeschichte der Physik; A fizika kultúrtörténete dt. Thun u.a.: Deutsch.

    Google Scholar 

  • Winter, H. W. (Ed.). (2016). Entdeckendes Lernen im Mathematikunterricht. https://doi.org/10.1007/978-3-658-10605-8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc Chat Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tran, N.C., Nguyen, P.C., Krause, E., Kraus, S.F. (2020). The Mathematization of Physics Throughout History. In: Kraus, S., Krause, E. (eds) Comparison of Mathematics and Physics Education I . MINTUS – Beiträge zur mathematisch-naturwissenschaftlichen Bildung. Springer Spektrum, Wiesbaden. https://doi.org/10.1007/978-3-658-29880-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-29880-7_6

  • Published:

  • Publisher Name: Springer Spektrum, Wiesbaden

  • Print ISBN: 978-3-658-29879-1

  • Online ISBN: 978-3-658-29880-7

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics