Skip to main content

Assessment of factors influencing the wall heat transfer with regard to increasing efficiency and compliance with future CO2 limits for commercial vehicles

  • Conference paper
  • First Online:
Internationaler Motorenkongress 2019

Part of the book series: Proceedings ((PROCEE))

Zusammenfassung

More than 125 years ago, Rudolf Christian Karl Diesel succeeded in putting the first 4-stroke heat engine, later called Diesel engine after its inventor, in operation [1]. The reached increase of efficiency, by three or four times compared with the efficiency of steam engines at this time, and the resulting advantage of the Diesel engine has not lost any actuality in today’s engine development ever since. Right now, confronted with strictly increasing emission control laws, while there’s a change to a multi-drive-technology path, the efficiency increase of the Diesel engine is more important than ever. Moreover the buyers demand is still a low total cost of ownership, which is depending mainly on the engines fuel efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • [1] R. C. K. Diesel, „Arbeitsverfahren und Ausführungsart für Verbrennungskraftmaschinen“. Berlin Patent 67207, 23 Februar 1893.

    Google Scholar 

  • [2] McKinsey & Company: Reid, B.; et al., „What’s sparking Electric-Vehicle Adoption in the Truck Industry?,“ McKinsey & Company, 2017.

    Google Scholar 

  • [3] FEV Consulting GmbH, „Antrieb im Wandel,“ VDMA, 2018.

    Google Scholar 

  • [4] Merker, G. P.; et al., Grundlagen Verbrennungsmotoren, Springer Vieweg, 2018.

    Google Scholar 

  • [5] Final Regulations Order for Phase 1 Greenhouse Gas Regulations §1956.8.

    Google Scholar 

  • [6] Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles.

    Google Scholar 

  • [7] „Daimler AG Internetauftritt,“ Daimler AG, 18 06 2018. [Online]. Available: https://www.daimler.com/produkte/lkw/1-mio-hdep.html. [Zugriff am 18 06 2018].

  • [8] Daimler AG: Heil, B.; Schmid, W.; Teigeler, M.; Sladek, W.; Öing, H.; Arndt, S.; Melcher, S.;, „Die neue Dieselmotorenbaureihe für schwere Nutzfahrzeuge von Daimler,“ Motortechnische Zeitschrift, Bd. Jahrgang 70, pp. 16 - 25, 01 2009.

    Google Scholar 

  • [9] Daimler AG: Nielsen, B.; Sladek, W.; Müller, M.; Eberle, F.;, „Die neuesten Heavy-Duty- Motorengeneration von Mercedes-Benz - Teil 1 Zielsetzung und Konzeption,“ Motortechnische Zeitschrift, pp. 56 - 61, 06 2016.

    Google Scholar 

  • [10] Daimler AG: Hermann, H.-O.; Kožuch, P.; Lettmann, H.; Brünemann, R., „Die neuesten Heavy-Duty-Motorengeneration von Mercedes-Benz - Teil 2 Verbrennung und Emissionen,“ Motortechnische Zeitschrift, pp. 60-64, 07/08 2016.

    Google Scholar 

  • [11] M. Grill, Objektorientiere Prozessrechnung von Verbrennungsmotoren, Stuttgart: Universität Stuttgart, 2006.

    Google Scholar 

  • [12] C. Eiglmeier, Phänomenologische Modellbildung des gasseitigen Wandwärmeübergangs in Dieselmotoren, Hannover: Universität Hannover, 2000.

    Google Scholar 

  • [13] T. Koch, „Thermodynamische Analyse des Einflusses der Betriebsstrategie eines NFZDieselmotors auf kritische Bauteiltemperaturen,“ 13. Tagung “Arbeitsprozess des Verbrennungsmotors”, 2011.

    Google Scholar 

  • [14] Suckart, D.; et al., „Flamme-Wand-Interaktion in einem Ottomotor,“ Motortechnische Zeitschrift, 10 2017.

    Google Scholar 

  • [15] Hendricks, T.L.; et al., Experimental investigation of piston heat transfer under conventional Diesel and reactivity controlled compression ignition combustion regimes, Sandia National Laboratories Manuscript, 2013.

    Google Scholar 

  • [16] P. Hügel, Untersuchungen zum Wandwärmeübergang im Teillastbetrieb an einem Einzylinder-Forschungsmotor mit Benzin-Direkteinspritzung, Karlsruhe: Karlsruher Institut für Technologie, 2017.

    Google Scholar 

  • [17] Toyota Motor Corporation: Kawaguchi, A.; et al., „Toyota’s Innovative Thermal Management Approaches - Thermo Swing Wall Insulation Technology -,“ 24th Aachen Colloquium Automobile and Engine Technology, 2015.

    Google Scholar 

  • [18] G. Woschni, „Beitrag zum Problem des Wärmeübergangs im Verbrennungsmotor,“ Motortechnische Zeitschrift, pp. 128 - 133, 04 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hennes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hennes, C., Lehmann, J., Kožuch, P., Koch, T. (2019). Assessment of factors influencing the wall heat transfer with regard to increasing efficiency and compliance with future CO2 limits for commercial vehicles. In: Liebl, J., Beidl, C., Maus, W. (eds) Internationaler Motorenkongress 2019. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-26528-1_14

Download citation

Publish with us

Policies and ethics