Skip to main content

Radar for Autonomous Driving – Paradigm Shift from Mere Detection to Semantic Environment Understanding

  • Conference paper
  • First Online:
Fahrerassistenzsysteme 2018

Abstract

The challenges for sensors and their correlated perception algorithms for driverless vehicles are tremendous. They have to provide more comprehensively than ever before a model of the complete static and dynamic surroundings of the ego-vehicle to understand the correlation of both with reference to the ego-vehicle’s movement. For dynamic objects, this means that radar has to provide the dimension and complete motion state as well as the class information, in highway, rural, and inner city scenarios. For the static world, new algorithm schemes have to be developed to enhance the shape representation of an object by image like semantics. In order to generate the necessary information, radar networking for 360° coverage have to be reinvented. Radar data processing toolchains have to be revolutionized by applying artificial intelligence and advanced signal processing in a synergetic manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daimler AG: Collision prevention assist. https://www.mercedes-benz.com/de/mercedes-benz/innovation/mit-abstand-am-besten-assistenzsysteme-von-mercedes-benz/. Zugegriffen: 26 Februar 2018

  2. Daimler AG: Mercedes-Benz-Intelligent-Drive. https://www.mercedes-benz.com/en/mercedes-benz/innovation/mercedes-benz-intelligent-drive/. Zugegriffen: 26 Februar 2018

  3. Daimler AG: Bertha-Benz Drive. http://media.daimler.com/marsMediaSite/de/instance/ko/Pionierleistung-Autonome-Langstreckenfahrt-im-Ueberland–und-Stadtverkehr-Mercedes-Benz-S-Klasse-INTELLIGENT-DRIVE-faehrt-autonom-auf-den-Spuren-von-Bertha-Benz.xhtml?oid=9904223. Zugegriffen: 26 Februar 2018

  4. Dickmann, J., Appenrodt, N., Brenk, C.: Bertha fährt autonom. In: Automobil Elektronik, pp. 44–47, March 2014

    Google Scholar 

  5. Dickmann, J., Appenrodt, N., Klappstein, J., Bloecher, H.L., Muntzinger, M., Sailer, A., Hahn, M., Brenk, C.: Making Bertha see even ore: radar contribution. IEEE Access 3, 1233–1247 (2015)

    Article  Google Scholar 

  6. Dickmann, J., Appenrodt, N., Brenk, C.: Making Bertha See. In: IEEE Spectrum, pp. 40–46, August 2014

    Google Scholar 

  7. Waymo: Waymo sensor suite. https://cdn-images1.medium.com/max/1600/1*9RQQY5ehTW5dYAhwdU4Pdg.jpeg. Zugegriffen: 26 Februar 2018

    Google Scholar 

  8. Uber: Self-Driving-Uber-Vehicles-San-Francisco. http://www.rideshareconnection.com/self-driving-uber-vehicles-san-francisco/. Zugegriffen: 26 Februar 2018

  9. General Motors: General motors sensor suite. http://www.repairerdrivennews.com/wp-content/uploads/2017/12/general-motors-av-autonomous-sensors57-2-1024x576.jpg. Zugegriffen: 26 Februar 2018

  10. Dickmann, J.: Automotive radar and radar based perception for driver-less cars. In: Ben Gurion University Radar Symposium. Ben-Gurion University of the Negev, Israel (2017)

    Google Scholar 

  11. Dickmann, J.: When will we give up driving our cars? A radar developers point of view. In: ISSCC, San Francisco (2017)

    Google Scholar 

  12. Dickmann, J.: Automotive radar systems at daimler: past-present-future. In: IEEE Radar Conference, Enabling Technologies for Advances in Radar, Philadelphia (2016)

    Google Scholar 

  13. McCloskey, D.: Radars as a complementary sensor for autonomous driving at Waymo. In: 14th European Radar Conference on EURAD-Workshop: Future Automotive Radar Systems, Nurenberg (2017)

    Google Scholar 

  14. Wyholt, A.: Scalability of sensor systems for active safety and autonomous functions. In: International VDI Conference Automotive Sensor Systems, München (2018)

    Google Scholar 

  15. Lombacher, J., Hahn, M., Dickmann, J., Wöhler, C.: Detection of arbitrarily rotated parked cars based on radar sensors. In: 16th International Radar Symposium (IRS) (2015)

    Google Scholar 

  16. Lombacher, J., Hahn, M., Dickmann, J., Wöhler, C.: Object classification in radar using ensemble methods. In: IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM) (2017)

    Google Scholar 

  17. Lombacher, J., Hahn, M., Dickmann, J., Wöhler, C.: Semantic radar grids. In: IEEE Intelligent Vehicles Symposium (2017)

    Google Scholar 

  18. Schumann, O., Hahn, M., Dickmann, J., Wöhler, C.: Comparison of random forest and long short-term memory network performances in classification tasks using radar. In: Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn (2017)

    Google Scholar 

  19. Giese, T., Klappstein, J., Dickmann, J., Wöhler, C.: Road course estimation using deep learning on radar data. In: International Radar Symposium (IRS 2017), Prag (2017)

    Google Scholar 

  20. Lombacher, J., Hahn, M., Dickmann, J., Wöhler, C.: Potential of radar for static object classification using deep learning methods. In: IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM) (2016)

    Google Scholar 

  21. Werber, K., Klappstein, J., Dickmann, J., Waldschmidt, C.: Interesting areas in radar gridmaps for vehicle self-localization. In: International Conference on Microwaves for Intelligent Mobility (ICMIM 2016), San Diego (2016)

    Google Scholar 

  22. AdaptIVe Project: AdaptIVe final project results (2017)

    Google Scholar 

  23. Schumann, O., Hahn, M., Dickmann, J., Wöhler, C.: Supervised clustering for radar applications: on the way to radar instance segmentation. In: ICMIM (2018)

    Google Scholar 

  24. Duraisamy, B., et al.: Track level fusion of extended objects from heterogeneous sensors. In: 19th International Conference on Information Fusion (FUSION) (2016)

    Google Scholar 

  25. Kellner, D., et al.: Tracking of extended objects with high-resolution doppler radar. IEEE Trans. Intell. Transp. Syst. 17(5)1341–1353 (2016)

    Article  Google Scholar 

  26. Brosseit, P., et al.: The volcanormal density for radar-based extended target tracking. In: IEEE 20th International Conference on Intelligent Transportation Systems (ITSC) (2017)

    Google Scholar 

  27. Duraisamy, B., et al.: Combi-Tor: track-to-track association framework for automotive sensor fusion. In: IEEE 18th International Conference on Intelligent Transportation Systems, Las Palmas (2015)

    Google Scholar 

  28. Duraisamy, B., et al.: Track level fusion algorithms for automotive safety applications. In: International Conference on Signal Processing, Image Processing & Pattern Recognition (2013)

    Google Scholar 

  29. Sarholz, F., et al.: Evaluation of different quality functions for road course estimation using imaging radar. In: Intelligent Vehicles Symposium (IV) (2011)

    Google Scholar 

  30. Dehkordi, S., Appenrodt, N., Dickmann, J., Waldschmidt, C.: Region of interest based adaptive high resolution parameter estimation with applications in automotive radar. In: IRS, Bonn (2018)

    Google Scholar 

  31. Duraisamy, B., et al.: Influence of the sensor local track covariance on the track-to-track sensor fusion. In: IEEE 18th International Conference on Intelligent Transportation Systems (2015)

    Google Scholar 

  32. Duraisamy, B., et al.: Object management strategy for an unified high level automotive sensor fusion framework. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Baden-Baden (2016)

    Google Scholar 

  33. Mayer, W.: Abbildender Radarsensor mit sendeseitig geschalteter Gruppenantenne, Dissertation. Institut fuer Mikrowellentechnik, University of Ulm, Ulm (2008)

    Google Scholar 

  34. Daimler AG: Remote parking pilot. http://media.daimler.com/marsMediaSite/de/instance/ko/Remote-Park-Pilot-Ferngesteuertes-Parken-per-Smartphone-App.xhtml?oid=9361355. Zugegriffen: 26 Februar 2018

  35. European Project MOSARIM: MOre Safety for All by radar Interference Mitigation, Proj. Ref. No: 248231, FP7-ICT (2014)

    Google Scholar 

  36. Muntzinger, M., Aeberhard, M., Zuther, S., Schmid, M., Dickmann, J., Dietmayer, K.: Reliable automotive pre-crash system with out-of-sequence measurement processing. In: IEEE Intelligent Vehicles Symposium, pp. 1022–1027 (2010)

    Google Scholar 

  37. Andres, M., Feil, P., Menzel, W.: 3D-scattering center detection of automotive targets using 77 GHz UWB radar sensors. In: EuCAP, Prag (2012)

    Google Scholar 

  38. Hosseini, A., Diewald, F., Klappstein, J., Dickmann, J., Neumann, H.: Modification of the landweber method based on the conjugate gradient method to restore automotive radar images. In: International Conference on Systems, Signals and Image Processing (IWSSIP), Wien (2012)

    Google Scholar 

  39. Kellner, D., Barjenbruch, M., Klappstein, J., Dickmann, J., Dietmayer, K.: Instantaneous full-motion estimation of arbitrary objects using dual doppler radar. In: Intelligent Vehicle Symposium (IV 2014), Dearborn (2014)

    Google Scholar 

  40. Sarholz, F., Mehnert, J., Klappstein, J., Dickmann, J., Radig, B.: Evaluation of different approaches for road course estimation using imaging radar. In: Intelligent Robots and Systems (2011)

    Google Scholar 

  41. Dickmann, J., Klappstein, J., Hahn, M., Muntzinger, M., Appenrodt, N., Brenk, C., Sailer, A.: Present research activities and future requirements on automotive radar from a car manufacturer’s point of view. In: IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Heidelberg (2015)

    Google Scholar 

  42. Dickmann, J., Meinel, H.: Automotive radar: from its origins to future directions. MWJournal 56(9), 24–40 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Dickmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dickmann, J. et al. (2019). Radar for Autonomous Driving – Paradigm Shift from Mere Detection to Semantic Environment Understanding. In: Bertram, T. (eds) Fahrerassistenzsysteme 2018. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-23751-6_1

Download citation

Publish with us

Policies and ethics