Skip to main content

Lubricant Technology for Hybrid Electric Vehicle Automatic Transmissions

  • Conference paper
  • First Online:
Reibungsminimierung im Antriebsstrang 2017

Part of the book series: Proceedings ((PROCEE))

Zusammenfassung

Of the three main automatic transmission types, the stepped automatic (AT), the continuously variable transmission (CVT) and the dual clutch transmission (DCT), the high mechanical efficiency of DCT technology [1] makes it a preferred technology for many hybrid vehicles. The mechanical efficiency of the DCT means it saves on both battery and engine demand to drive the vehicle. It is selected for hybrids because it provides high energy transfer efficiency, which delivers vehicle fuel economy performance improvements. The DCT is efficient in terms of mechanical efficiency as there are no torque converter losses [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • 1. Matthes, B. “Dual Clutch Transmissions – Lessons Learned and Future Potential” SAE Technical Paper 2005-01-1021, 2005.

    Google Scholar 

  • 2. Chamberlin, B., Gold. E., Nitsche. J, “HEV P2 Module Concepts for Different Transmission Architectures”. CTI Mag. The automotive TM, HEV and EV Drives magazine by CTI. Dec. 2016.

    Google Scholar 

  • 3. Tipton, C., Jao, T-C., Newcomb, T. “Passenger Car Automatic Transmissions” 4th Ed, 2012, Ch. 12.

    Google Scholar 

  • 4. Blessing, C. “Modular hybrid transmission kit for GETRAG’s new PowerShift generation. 14th International CTI Symposium, Automotive Transmissions, HEV and EV drives, 8th December 2015.

    Google Scholar 

  • 5. Wadhwa, C.L. “High Voltage Engineering” p. 18, New Age International. 1 Jan 2007.

    Google Scholar 

  • 6. McFadden, C., Hughes, K., Raser, L., and Newcomb, T., “Electrical Conductivity of New and Used Automatic Transmission Fluids,” SAE Int. J. Fuels Lubr. 9(3):519-526, 2016, https://doi.org/10.4271/2016-01-2205.

  • 7. Abedian, B., “Dangers of Electrostatic Discharge in Engine Oil” Machinery Lubrication 2015.

    Google Scholar 

  • 8. Carey, A.A. “The Dielectric Constant of Lubrication Oils” Computational Systems Inc. Knoxville TN. p. 4. 1998 Defense Technical Information Center. US DoD.

    Google Scholar 

  • 9. “DupontTM Kapton® Summary of Properties”. Technical Data Report from Dupont.

    Google Scholar 

  • 10. Erdman, H.G., “Electrical Insulating Oils” ASTM publication 1992. ISBN: 0-8031-1179-7.

    Google Scholar 

  • 11. www.professionalplastics.com/professionalplastics.

  • 12. DuPont, Nomex® Technical Information Sheet, 2017.

    Google Scholar 

  • 13. Ildstad E., Chalise S.R., “AC Voltage Endurance of Polyimide Insulated Magnet Wire” 2009 IEEE 978-1-4244-4559-2/09.

    Google Scholar 

  • 14. Hayakawa, N., Hitoshi, O., “Partial Discharge Characteristics of Inverter-fed Motor Coil Samples under AC and Surge Voltage Conditions” DEIS Feature Article. January/February 2005 – Vol. 21, No. 1.

    Google Scholar 

  • 15. Kershaw, I. “Long Term Trends in Vehicle Development” ICIS 21st World Base Oils & Lubricants Conference. London 16th Feb. 2017 p27.

    Google Scholar 

  • 16. Tipler, P.A. “College Physics” ISBN-10: 0879012684

    Google Scholar 

  • 17. Muto, D., Oya, M., Tsuneo, Aoi., et al. “A Study on Partial Discharge Phenomena of Winding Wires” Polymer Materials Technology Review, No. 45, 2014.

    Google Scholar 

  • 18. Stone, G.C., Boulter, E.A., Culbert, I, et al. “Electrical Insulation for Rotating Machines” Ch. I. IEEE 2004

    Google Scholar 

  • 19. Crolla D., Encyclopedia of Automotive Engineering, Vol.2 Part 3, 2015. ISBN 978-0-470-97402-5.

    Google Scholar 

  • 20. Maher, B., “Ultracapacitors and the Hybrid Electric Vehicle” http://www.altenergymag.com/article/2005/02/ultracapacitors-and-the-hybridelectric-vehicle.

  • 21. Lanham, C. “Understanding the tests that are recommended for electric motor predictive maintenance”. New York: Baker Instrument Company, Energy publication (2002).

    Google Scholar 

  • 22. Hitachi Metals Ltd., Catalog No. KVE200A.

    Google Scholar 

  • 23. Stone, G.C., Boulter, E.A., Culbert, I, et al., “Electrical Insulation for Rotating Machines-Design, Evaluation, Aging, Testing, and Repair”. 2004. ISBN 0-471-44506-1.

    Google Scholar 

  • 24. Cockrill, N.S., “The Infrared Spectroscopic Study of the Effects of Solvent Exposure on Polyimide Films”. Thesis 2009, Ball State University, Indiana USA 25. ISO 13226:2011(E).

    Google Scholar 

  • 26. Mortier, R.M., Fox, M.F., Orszulik, S. (Eds). “Chemistry and Technology of Lubricants” ISBN 978-1-4020-8662-5.

    Google Scholar 

  • 27. Gahagan, M.P., Hunt, G.J. “New insights on the Impact of Automatic Transmission Fluid (ATF) Additives on Corrosion of Copper-The Application of a Wire Electrical Resistance Method” IJAE, 7 (2016) p115-120.

    Google Scholar 

  • 28. Hunt, G.J., Gahagan, M.P., Peplow, M.A. “Wire resistance method for measuring the corrosion of copper by lubricating fluids”. Lubrication Science, 2016. https://doi.org/10.1002/ls.1368

  • 29. Hunt, G.J., “New Perspectives on the Temperature Dependence of Lubricant Additives on Copper Corrosion,” SAE Int. J. Fuels Lubr. 10(2):2017, https://doi.org/10.4271/2017-01-0891.

  • 30. Richardson, R.C., O’Connor, B.M., Gahagan, M.P. “Balancing Extended Oil Drain with Extended Equipment Life” SAE Technical Paper 961110, 1996.

    Google Scholar 

  • 31. Lam, R., “Next Generation Friction Products and Technologies” CTI Symposium, Shanghai. Innovative Automotive Transmissions & Electric Drives. 10-12 September, 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gahagan, M., Einertshofer, C. (2018). Lubricant Technology for Hybrid Electric Vehicle Automatic Transmissions. In: Liebl, J. (eds) Reibungsminimierung im Antriebsstrang 2017. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-23147-7_2

Download citation

Publish with us

Policies and ethics