Skip to main content

Modellieren lernen mit heuristischen Lösungsbeispielen. Interventionen zum selbstständigkeitsorientierten Erwerb von Modellierungskompetenzen

  • Chapter
  • First Online:
Evaluierte Lernumgebungen zum Modellieren

Part of the book series: Realitätsbezüge im Mathematikunterricht ((REIMA))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Atkinson, R. K., & Derry, S. J. (2000). Computer-based examples designed to encourage optimal example processing: A study examining the impact of sequentially presented, subgoal-oriented worked examples. In B. J. Fishman & S. F. O’Connor-Divelbiss (Hrsg.), Proceedings of the Fourth International Conference of Learning Sciences (S. 132–133). Hillsdale: Erlbaum.

    Google Scholar 

  • Atkinson, R. K., Renkl, A., & Merrill, M. M. (2003). Transitioning from studying examples to solving problems: effects of self-explanation prompts and fading worked-out steps. Journal of Educational Psychology, 95(4), 774.

    Article  Google Scholar 

  • Bandura, A. (1977). Social learning theory. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Baruk, S. (1989). „Wie alt ist der Kapitän?“ Über den Irrtum in der Mathematik. Basel: Birkhäuser.

    MATH  Google Scholar 

  • Blum, W., & Leiss, D. (2005). Modellieren im Unterricht mit der „Tanken“-Aufgabe. mathematik lehren, 128, 18–21.

    Google Scholar 

  • Boero, P. (1999). Argumentation and mathematical proof: a complex, productive, unavoidable relationship in mathematics and mathematics education. International Newsletter on the Teaching and Learning of Mathematical Proof, 7/8.

    Google Scholar 

  • Bruder, R., & Collet, C. (2011). Problemlösen lernen im Mathematikunterricht. Berlin: Cornelsen Scriptor.

    Google Scholar 

  • Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: teaching the crafts of reading, writing, and mathematics. Knowing, learning, and instruction: Essays in honor of Robert Glaser, 18, 32–42.

    Google Scholar 

  • Dignath, C., & Büttner, G. (2008). Components of fostering self-regulated learning among students. A meta-analysis on intervention studies at primary and secondary school level. Metacognition and Learning, 3(3), 231–264.

    Article  Google Scholar 

  • Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. Zentralblatt für Didaktik der Mathematik, 38(2), 143–162.

    Article  Google Scholar 

  • van Gog, T., & Rummel, N. (2010). Example-based learning: Integrating cognitive and social-cognitive research perspectives. Educational Psychology Review, 22(2), 155–174.

    Article  Google Scholar 

  • van Gog, T., Paas, F., & van Merriënboer, J. J. (2008). Effects of studying sequences of process-oriented and product-oriented worked examples on troubleshooting transfer efficiency. Learning and Instruction, 18(3), 211–222.

    Article  Google Scholar 

  • Haggarty, L., & Pepin, B. (2002). An investigation of mathematics textbooks and their use in English, French and German classrooms: who gets an opportunity to learn what? British Educational Research Journal, 28(4), 567–590.

    Article  Google Scholar 

  • Hattie, J., & Timperley, H. (2007). The power of feedback. Review of educational research, 77(1), 81–112.

    Article  Google Scholar 

  • Hilbert, T. S., Renkl, A., Kessler, S., & Reiss, K. (2008). Learning to prove in geometry: learning from heuristic examples and how it can be supported. Learning and Instruction, 18(1), 54–65.

    Article  Google Scholar 

  • Hmelo-Silver, C. E., & Barrows, H. S. (2006). Goals and strategies of a problem-based learning facilitator. Interdisciplinary Journal of Problem-based Learning, 1(1), 4.

    Article  Google Scholar 

  • Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational psychologist, 38(1), 23–31.

    Article  Google Scholar 

  • van Merriënboer, J. J., & Kirschner, P. A. (2012). Ten steps to complex learning: a systematic approach to four-component instructional design. New York: Routledge.

    Google Scholar 

  • van Merriënboer, J. J., & Sluijsmans, D. M. (2009). Toward a synthesis of cognitive load theory, four-component instructional design, and self-directed learning. Educational Psychology Review, 21(1), 55–66.

    Article  Google Scholar 

  • Nadolski, R. J., Kirschner, P. A., & van Merriënboer, J. J. (2006). Process support in learning tasks for acquiring complex cognitive skills in the domain of law. Learning and Instruction, 16(3), 266–278.

    Article  Google Scholar 

  • Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: recent developments. Educational Psychologist, 38(1), 1–4.

    Article  Google Scholar 

  • Perels, F., Gürtler, T., & Schmitz, B. (2005). Training of self-regulatory and problem-solving competence. Learning and Instruction, 15(2), 123–139.

    Article  Google Scholar 

  • Pólya, G. (1949). Schule des Denkens. Vom Lösen mathematischer Probleme. (Original: How to solve it. A new aspect of mathematical method). Bern: Francke.

    Google Scholar 

  • Rach, S., Heinze, A. & Ufer, S. (2016). Die Weiterentwicklung von Mathematikunterricht durch Zusammenarbeit von Wissenschaft und Praxis im Hamburger Schulversuch alles»könner. In U. Harms, B. Schroeter & B. Klüh (Hrsg.), Entwicklung kompetenzorientierten Unterrichts in Zusammenarbeit von Forschung und Schulpraxis: komdif und der Hamburger Schulversuch alles»könner (S. 127–148). Münster: Waxmann.

    Google Scholar 

  • Reiss, K., & Lindmeier, A. (2012). Wie haben Maxi und Martina das gelöst? Schülerinnen und Schüler können komplexe Themen eigenständig lernen – schwächere ebenso wie begabte. SchulVerwaltung NRW. Zeitschrift für Schulleitung und Schulaufsicht, 11, 307–310.

    Google Scholar 

  • Reiss, K., & Renkl, A. (2002). Learning to prove: the idea of heuristic examples. Zentralblatt für die Didaktik der Mathematik, 34(1), 29–35.

    Article  Google Scholar 

  • Renkl, A. (2014). Toward an instructionally oriented theory of example-based learning. Cognitive Science, 38, 1–37.

    Article  Google Scholar 

  • Renkl, A., Atkinson, R. K., & Große, C. S. (2004). How fading worked solution steps works – a cognitive load perspective. Instructional Science, 32(1–2), 59–82.

    Article  Google Scholar 

  • Reusser, K., & Stebler, R. (1997). Every word problem has a solution—The social rationality of mathematical modeling in schools. Learning and instruction, 7(4), 309–327.

    Article  Google Scholar 

  • Schiefele, U., & Pekrun, R. (1996). Psychologische Modelle des fremdgesteuerten und selbstgesteuerten Lernens. In F. E. Weinert (Hrsg.), Psychologie des Lernens und der Instruktion. Enzyklopädie der Psychologie. Serie Pädagogische Psychologie, (Bd. 2, S. 249–278). Göttingen: Hogrefe.

    Google Scholar 

  • Schoenfeld, A. H. (1992). Learning to think mathematically: problem solving, metacognition, and sense making in mathematics. In D. Grouws (Hrsg.), Handbook of research on mathematics teaching and learning (S. 334–370). New York: Macmillan.

    Google Scholar 

  • Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland (KMK) (2004). Bildungsstandards im Fach Mathematik für den Mittleren Schulabschluss: Beschluss vom 04.12.2003. München: Luchterhand.

    Google Scholar 

  • Stark, R., Mandl, H., Gruber, H., & Renkl, A. (2002). Conditions and effects of example elaboration. Learning and Instruction, 12(1), 39–60.

    Article  Google Scholar 

  • Sweller, J. (1988). Cognitive load during problem solving: effects on learning. Cognitive science, 12(2), 257–285.

    Article  Google Scholar 

  • Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational psychology review, 22(2), 123–138.

    Article  Google Scholar 

  • Tarmizi, R. A., & Sweller, J. (1988). Guidance during mathematical problem solving. Journal of educational psychology, 80(4), 424.

    Article  Google Scholar 

  • Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International Statistical Review, 67(3), 223–248.

    Article  MATH  Google Scholar 

  • Zauner, H., Lindmeier, A., & Reiss, K. (2008). „Habe ich alles bedacht?“ – Ein Modell zur Strukturierung prozessorientierter heuristischer Lösungsbeispiele aus dem Bereich der Leitidee „Daten und Zufall“. In É. Vásárhelyi (Hrsg.), Beiträge zum Mathematikunterricht 2008 (S. 193–196). Münster: WTM.

    Google Scholar 

  • Zöttl, L. (2010). Modellierungskompetenz fördern mit heuristischen Lösungsbeispielen. Hildesheim: Franzbecker.

    Google Scholar 

  • Zöttl, L., Ufer, S., & Reiss, K. (2010). Modelling with heuristic worked examples in the KOMMA learning environment. Journal für Mathematik-Didaktik, 31(1), 143–165.

    Article  Google Scholar 

  • Zöttl, L., Ufer, S., & Reiss, K. (2011). Assessing modelling competencies using a multidimensional IRT approach. In G. Kaiser, W. Blum, R. Borromeo Ferri, G. Stillman (Hrsg.), Trends in teaching and learning of mathematical modelling (S. 427–437). Heidelberg: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lindmeier, A., Ufer, S., Reiss, K. (2018). Modellieren lernen mit heuristischen Lösungsbeispielen. Interventionen zum selbstständigkeitsorientierten Erwerb von Modellierungskompetenzen. In: Schukajlow, S., Blum, W. (eds) Evaluierte Lernumgebungen zum Modellieren. Realitätsbezüge im Mathematikunterricht. Springer Spektrum, Wiesbaden. https://doi.org/10.1007/978-3-658-20325-2_13

Download citation

Publish with us

Policies and ethics