Skip to main content

Bauwesen

  • Chapter
  • First Online:
Kunststoffe erfolgreich kleben

Zusammenfassung

Faserverbundwerkstoffe gewinnen auch im Bauwesen zunehmend an Bedeutung. Aus Kostengründen werden vorzugsweise gasfaserverstärkte Kunststoffe (GFK) verwendet. Für die Verbindung einzelner GFK-Bauteile zu kompletten Tragwerken kommen mechanische Methoden zum Einsatz, aber auch das Kleben.

Geklebte Brücken aus Faserverbundwerkstoffen zeigen zum Beispiel eine im Vergleich zu solchen aus Stahl oder Beton deutlich höhere Lebenserwartung. Klebstoffe helfen bei der Restaurierung von maroden Gebäudeteilen und vereinen als Fassadenelemente die Vorteile der klassischen Fassaden in einem System. Zudem ermöglichen sie, neue architektonische Wege zu gehen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

Verwendete Literatur

  1. Structural Design of Polymer Composites: Eurocomp Design Code and Background Document. CRC Press (2003)

    Google Scholar 

  2. Vallée, T.: Adhesively bonded lap joints of pultruded GFRP shapes. EPFL, Lausanne (2004)

    Google Scholar 

  3. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos Trans R Soc A Math Phys Eng Sci 221, 163–198 (1921). https://doi.org/10.1098/rsta.1921.0006

    Article  Google Scholar 

  4. Kinloch, A.J.: Interfacial fracture mechanical aspects of adhesive bonded joints – a review. J Adhes 10, 193–219 (1979). https://doi.org/10.1080/00218467908544625

    Article  Google Scholar 

  5. Fernlund, G., Spelt, J.K.: Mixed-mode fracture characterization of adhesive joints. Compos Sci Technol 50, 441–449 (1994). https://doi.org/10.1016/0266-3538(94)90052-3

    Article  Google Scholar 

  6. Choupani, N.: Mixed-mode cohesive fracture of adhesive joints: Experimental and numerical studies. Eng Fract Mech 75, 4363–4382 (2008). https://doi.org/10.1016/j.engfracmech.2008.04.023

    Article  Google Scholar 

  7. Marzi, S., Biel, A., Stigh, U.: On experimental methods to investigate the effect of layer thickness on the fracture behavior of adhesively bonded joints. Int J Adhes Adhes 31, 840–850 (2011). https://doi.org/10.1016/j.ijadhadh.2011.08.004

    Article  Google Scholar 

  8. Greer, J.M., Galyon Dorman, S.E., Hammond, M.J.: Some comments on the Arcan mixed-mode (I/II) test specimen. Eng Fract Mech 78, 2088–2094 (2011). https://doi.org/10.1016/j.engfracmech

    Article  Google Scholar 

  9. Volkersen, O.: Die Nietkraftverteilung in zugbeanspruchten Nietverbindungen mit konstanten Laschenquerschnitten. Luftfahrtforschung 15, 41–47 (1938)

    Google Scholar 

  10. Goland, M., Reissner, E.: The stresses in cemented joints. J Appl Mech 11, A17–A27 (1944)

    Google Scholar 

  11. Oplinger, D.W.: Effects of adherend deflections in single lap joints. Int J Solids Struct 31, 2565–2587 (1994). https://doi.org/10.1016/0020-7683(94)90037-X

    Article  MATH  Google Scholar 

  12. Tsai, M.Y., Oplinger, D.W., Morton, J.: Improved theoretical solutions for adhesive lap joints. Int J Solids Struct 35, 1163–1185 (1998). https://doi.org/10.1016/S0020-7683(97)00097-8

    Article  MATH  Google Scholar 

  13. da Silva, L.F.M., das Neves, P.J.C., Adams, R.D., Spelt, J.K.: Analytical models of adhesively bonded joints – Part I: literature survey. Int J Adhes Adhes 29, 319–330 (2009). https://doi.org/10.1016/j.ijadhadh.2008.06.005

    Article  Google Scholar 

  14. da Silva, L.F.M., das Neves, P.J.C., Adams, R.D., Wang, A., Spelt, J.K.: Analytical models of adhesively bonded joints-Part II: comparative study. Int J Adhes Adhes 29, 331–341 (2009). https://doi.org/10.1016/j.ijadhadh.2008.06.007

    Article  Google Scholar 

  15. Campilho, R.D.S.G., Moura, D.C., Banea, M.D., Da Silva, L.F.M.: Adhesive thickness effects of a ductile adhesive by optical measurement techniques. Int J Adhes Adhes 57, 125–132 (2015). https://doi.org/10.1016/j.ijadhadh.2014.12.004

    Article  Google Scholar 

  16. da Silva, L.F.M., Lopes, M.J.C.Q.: Joint strength optimization by the mixed-adhesive technique. Int J Adhes Adhes 29, 509–514 (2009). https://doi.org/10.1016/j.ijadhadh.2008.09.009

    Article  Google Scholar 

  17. Hart-Smith, L.J.: The role of biaxial stresses in discriminating between meaningful and illusory composite failure theories. Compos Struct 25, 3–20 (1993). https://doi.org/10.1016/0263-8223(93)90146-H

    Article  Google Scholar 

  18. Hart-Smith, L.J.: Predictions of a generalized maximum-shear-stress failure criterion for certain fibrous composite laminates. Fail Crit Fibre Reinf Polym Compos, (2004). https://doi.org/10.1016/B978-008044475-8/50010-X

  19. Echaabi, J., Trochu, F., Gauvin, R.: Review of failure criteria of fibrous composite materials. Polym Compos 17, 786–798 (1996). https://doi.org/10.1002/pc.10671

    Article  Google Scholar 

  20. Deuschle, H.M., Puck, A.: Application of the puck failure theory for fibre-reinforced composites under three-dimensional stress: comparison with experimental results. J Compos Mater 47, 827–846 (2012). https://doi.org/10.1177/0021998312462158

    Article  Google Scholar 

  21. Bažant, Z.P., Xi, Y., Reid, S.G.: Statistical size effect in quasi-brittle structures: I. Is Weibull Theory applicable? J Eng Mech 117, 2609–2622 (1991). https://doi.org/10.1061/(ASCE)0733-9399(1991)117:11(2609)

    Article  Google Scholar 

  22. Langlois, R.: Estimation of Weibull parameters. J Mater Sci Lett 10, 1049–1051 (1991). https://doi.org/10.1007/BF00720121

    Article  Google Scholar 

  23. Freudenthal, A.M.: Statistical approach to brittle fracture. Fracture 2, 591–619 (1968)

    MATH  Google Scholar 

  24. Vallée, T., Correia, J.R.J.R.J.R., Keller, T.: Optimum thickness of joints made of GFPR pultruded adherends and polyurethane adhesive. Compos Struct 92, 2102–2108 (2010). https://doi.org/10.1016/j.compstruct.2009.09.056

    Article  Google Scholar 

  25. Vallée, T., Tannert, T., Meena, R., Hehl, S.: Dimensioning method for bolted, adhesively bonded, and hybrid joints involving Fibre-Reinforced-Polymers. Compos Part B Eng 46, 179–187 (2013). https://doi.org/10.1016/j.compositesb.2012.09.074

    Article  Google Scholar 

  26. Vallée, T., Correia, J.R.J.R.C.J.R., Keller, T.: Probabilistic strength prediction for double lap joints composed of pultruded GFRP profiles part I: Experimental and numerical investigations. Compos Sci Technol 66, 1915–1930 (2006). https://doi.org/10.1016/j.compscitech.2006.04.001

    Article  Google Scholar 

  27. Correia, J.R.R., Vallée, T., Keller, T.: Optimum thickness of joints made of GFRP pultruded adherends and polyurethane adhesive. ICCM Int. Conf. Compos. Mater. (2009)

    Google Scholar 

  28. Tannert, T., Hehl, S., Vallee, T.: Probabilistic design of adhesively bonded timber joints. Bautechnik 87, 623–629 (2010). https://doi.org/10.1002/bate.201010043

    Article  Google Scholar 

  29. Tannert, T., Vallée, T., Hehl, S.: Probabilistic strength prediction of adhesively bonded timber joints. Wood Sci Technol 46, 503–513 (2011). https://doi.org/10.1007/s00226-011-0424-0

    Article  Google Scholar 

  30. Hahn, B., Vallée, T., Stamm, B., Weinand, Y.: Experimental investigations and probabilistic strength prediction of linear welded double lap joints composed of timber. Int J Adhes Adhes 39, 42–48 (2012). https://doi.org/10.1016/j.ijadhadh.2012.06.004

    Article  Google Scholar 

  31. Fecht, S., Vallée, T., Tannert, T., Fricke, H.: Adhesively bonded hardwood joints under room temperature and elevated temperatures. J Adhes 90, 401–419 (2014). https://doi.org/10.1080/00218464.2013.836968

    Article  Google Scholar 

  32. Grunwald, C., Fecht, S., Vallée, T., Tannert, T., Vallée, T., Tannert, T.: Adhesively bonded timber joints – Do defects matter? Int J Adhes Adhes 55, 12–17 (2014). https://doi.org/10.1016/j.ijadhadh.2014.07.003

    Article  Google Scholar 

  33. www.de.wikipedia.org/wiki/Faserverbundwerkstoff. Zugegriffen: Oktober 2011

  34. Witten, E.: Der GFK-Markt Europa in Composites-Marktbericht (2016)

    Google Scholar 

  35. Adhäsion Kleb Dicht 10, 28 (2011)

    Google Scholar 

  36. Sayer, F., Kleiner, F.: Adhäsion Kleb Dicht 6, 16 (2011)

    Article  Google Scholar 

  37. Tartler, U.: Adhäsion Kleb Dicht 12, 28 (2010)

    Google Scholar 

  38. Gansow, M.: Adhäsion Kleb Dicht 06, 28 (2010)

    Google Scholar 

  39. Nagel, C., Brede, M.: Adhäsion Kleb Dicht 06, 38 (2009)

    Google Scholar 

  40. Sedlacek, G., et al.: Geklebte Verbindungen im Stahlbau. 5. Klebkolloquium Gemeinsame Forschung in der Klebtechnik, Frankfurt, 16.–15. Febr. (2005)

    Google Scholar 

  41. Donner, A., Lohse, H.: Adhäsion Kleb Dicht 1–2, 10 (2002)

    Google Scholar 

  42. Potyrala, P.B.: Use of Fiber Reinforced Polymer Composite in Bridge Construction, Diplomarbeit Universtat Politècnica de Catalunya

    Google Scholar 

  43. Siebert, M., Schlimmer, M.: Prozesssicheres Kleben von Rundsteckverbindungen aus metallischen Werkstoffen unter rauen Fertigungsbedingungen. 5. Klebkolloquium Gemeinsame Forschung in der Klebtechnik, Frankfurt, 16.–15. Febr. (2005)

    Google Scholar 

  44. Schlimmer, M., Siebert, M.: EP 1 552 906 A2

    Google Scholar 

  45. Ridzewski, J., Kästner, L.: DE 103 48 820 B3 2004.08.26

    Google Scholar 

  46. Priv. Mitteilung: S. Wischnewski, Fiberline Composites A/S

    Google Scholar 

  47. Priv. Mitteilung: M. Neumann, Butzbach GmbH, Industrietore

    Google Scholar 

  48. Reinforced Plastics, July/August 2011, S. 16

    Google Scholar 

  49. Reinforced Plastics, July/August 2011, S. 18 ff

    Google Scholar 

  50. http://www.reinforcedplastics.com/view/8898/composites-clad-sheraton-hotel-milan/. Zugegriffen: 31. Juli 2017

Weiterführende Literatur

  1. Siebert, M.: EP 1 553 311 A2

    Google Scholar 

  2. Reinforced Plastics, July/August 2011, S. 7

    Google Scholar 

  3. Priv. Mitteilung: A. Verheus, Lightweight Structures B. V.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Till Vallée , Simon Fecht , Cordula Grunwald , Michael Adam or Hartwig Lohse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vallée, T., Fecht, S., Grunwald, C., Adam, M., Lohse, H. (2018). Bauwesen. In: Doobe, M. (eds) Kunststoffe erfolgreich kleben. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-18445-2_9

Download citation

Publish with us

Policies and ethics