Skip to main content

Introduction to Epigenetics

  • Chapter
  • First Online:
Epigenetics

Abstract

Epigenetic processes control central genomic functions such as the utilization of genetic information over the course of life. Epigenetic processes are controlled by adding and removing epigenetic modifications on the genes. Epigenetic modifications are added at different molecular levels and form a complex combination of positively and negatively regulating molecular signals. Most of these signals are established directly on the DNA bases or on the proteins that package the DNA, called histones. Modern sequencing methods make it possible to locate these various types of epigenetic modification with precision and to associate their functional significance with a particular gene-specific control. Epigenetic modifications are cell-specific, and their function must therefore be viewed and evaluated in a different way to genetic changes, which are the same in all cells. In epigenetic studies, therefore—unlike genetic analysis—the cell type or (in tissues) the cell composition must always be included in the picture. Cell-type-specific epigenetic patterns can be affected by factors that are endogenous to the organism (ageing, hormonal control) and by those that are exogenous (environment, e.g., metabolism, stress), and they lead to persistent changes in cell programming. As a general principle, cell-type-specific epigenetic differences are considerably more stable and more pronounced than changes arising due to exogenous factors. Epigenetic modifications are stably passed on through cell divisions. However, when cell programming changes, they are deleted or their composition is altered (reprogrammed). In human beings, large-scale reprogramming (deletion) of old ‘inherited’ epigenetic modifications takes place both in gametes and in the embryo shortly after fertilization. For this reason, transmission of ‘acquired’ epigenetic modifications across generations is possible only to a very limited extent in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arand, J., Wossidlo, M., Lepikhov, K., Peat, J. R., Reik, W., & Walter, J. (2015). Selective impairment of methylation maintenance is the major cause of DNA methylation reprogramming in the early embryo. Epigenetics Chromatin, 8(1), 1.

    Article  Google Scholar 

  • Azad, N., Rudin, C. M., & Baylin, S. B. (2013). The future of epigenetic therapy in solid tumours – lessons from the past. Nature Reviews Clinical Oncology, 10(5), 256–266.

    Article  Google Scholar 

  • Baulcombe, D. (2004). RNA silencing in plants. Nature, 431(7006), 356–363.

    Article  Google Scholar 

  • Bernstein, B. E., Mikkelsen, T. S., Xie, X. H., Kamal, M., Huebert, D. J., Cuff, J., et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125(2), 315–326.

    Article  Google Scholar 

  • Bernstein, B. E., Stamatoyannopoulos, J. A., Costello, J. F., Ren, B., Milosavljevic, A., Meissner, A., et al. (2010). The NIH roadmap epigenomics mapping consortium. Nature Biotechnology, 28(10), 1045–1048.

    Article  Google Scholar 

  • Chi, A. S., & Bernstein, B. E. (2009). Developmental biology. Pluripotent chromatin state. Science, 323(5911), 220–221.

    Article  Google Scholar 

  • Clerc, P., & Avner, P. (2006). Random X-chromosome inactivation. Skewing lessons for mice and men. Current Opinion in Genetics & Development 16(3), 246–253.

    Google Scholar 

  • Corpet, A., & Almouzni, G. (2009). Making copies of chromatin. The challenge of nucleosomal organization and epigenetic information. Trends in Cell Biology, 19(1), 29–34.

    Article  Google Scholar 

  • Cubas, P., Vincent, C., & Coen, E. (1999). An epigenetic mutation responsible for natural variation in floral symmetry. Nature, 401(6749), 157–161.

    Article  Google Scholar 

  • ENCODE Project Consortium. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489(7414), 57–74.

    Article  Google Scholar 

  • Ficz, G., Hore, T. A., Santos, F., Lee, H. J., Dean, W., Arand, J., et al. (2013). FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell, 13(3), 351–359.

    Article  Google Scholar 

  • Gehring, M., Reik, W., & Henikoff, S. (2009). DNA demethylation by DNA repair. Trends in Genetics, 25(2), 82–90.

    Article  Google Scholar 

  • Habibi, E., Brinkman, A. B., Arand, J., Kroeze, L. I., Kerstens, H. H. D., Matarese, F., et al. (2013). Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. Cell Stem Cell, 13(3), 360–369.

    Article  Google Scholar 

  • Heard, E., & Martienssen, R. A. (2014). Transgenerational epigenetic inheritance: Myths and mechanisms. Cell, 157(1), 95–109.

    Article  Google Scholar 

  • Henderson, I. R., & Jacobsen, S. E. (2007). Epigenetic inheritance in plants. Nature, 447(7143), 418–424.

    Article  Google Scholar 

  • Hirsch, S., Baumberger, R., & Grossniklaus, U. (2012). Epigenetic variation, inheritance, and selection in plant populations. Cold Spring Harbor Symposia on Quantitative Biology, 77, 97–104.

    Article  Google Scholar 

  • Huypens, P., Sass, S., Wu, M., Dyckhoff, D., Tschöp, M., Theis, F., et al. (2016). Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat Genet, 5, 497–9.

    Google Scholar 

  • Karnik, R., & Meissner, A. (2013). Browsing (epi)genomes: A guide to data resources and epigenome browsers for stem cell researchers. Cell Stem Cell, 13(1), 14–21.

    Article  Google Scholar 

  • Knippers, R., & Nordheim, A. (Eds.). (2015). Molekulare Genetik (10th ed., p. 568). ThiemeVerlag: Stuttgart.

    Google Scholar 

  • Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128(4), 693–705.

    Article  Google Scholar 

  • Kubicek, S., Schotta, G., Lachner, M., Sengupta, R., Kohlmaier, A., Perez-Burgos, L., et al. (2006). The role of histone modifications in epigenetic transitions during normal and perturbed development. Ernst Schering Research Foundation Workshop 57, 1–27.

    Google Scholar 

  • Lewin, B. (1998). The mystique of epigenetics. Cell, 93(3), 301–303.

    Article  Google Scholar 

  • Maleszka, R. (2008). Epigenetic integration of environmental and genomic signals in honey bees. The critical interplay of nutritional, brain and reproductive networks. Epigenetics, 3(4), 188–192.

    Article  Google Scholar 

  • Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., et al. (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 448(7153), 553–560.

    Article  Google Scholar 

  • Seisenberger, S., Peat, J. R., & Reik, W. (2013). Conceptual links between DNA methylation reprogramming in the early embryo and primordial germ cells. Current Opinion in Cell Biology, 25(3), 281–288.

    Article  Google Scholar 

  • Varga-Weisz, P. D., & Becker, P. B. (2006). Regulation of higher-order chromatin structures by nucleosome-remodelling factors. Current Opinion in Genetics & Development, 16(2), 151–156.

    Article  Google Scholar 

  • Wang, Y., Jorda, M., Jones, P. L., Maleszka, R., Ling, X., Robertson, H. M., et al. (2006). Functional CpG methylation system in a social insect. Science, 314(5799), 645–647.

    Article  Google Scholar 

  • Weisenberger, D. J. (2014). Characterizing DNA methylation alterations from the Cancer Genome Atlas. Journal of Clinical Investigation, 124(1), 17–23.

    Article  Google Scholar 

  • Whitcomb, S. J., Basu, A., Allis, C. D., & Bernstein, E. (2007). Polycomb group proteins: An evolutionary perspective. Trends in Genetics, 23(10), 494–502.

    Article  Google Scholar 

  • Whitelaw, N. C., & Whitelaw, E. (2006). How lifetimes shape epigenotype within and across generations. Human Molecular Genetics, 15(2), R131–R137.

    Article  Google Scholar 

  • Wossidlo, M., Nakamura, T., Lepikhov, K., Marques, C. J., Zakhartchenko, V., Boiani, M., et al. (2011). 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nature Communications, 2, 241.

    Article  Google Scholar 

  • Youngson, N. A., & Whitelaw, E. (2008). Transgenerational epigenetic effects. Annual Review of Genomics and Human Genetics, 9, 233–257.

    Article  Google Scholar 

  • Zheng, X. W., Pontes, O., Zhu, J. H., Miki, D., Zhang, F., Li, W. X., et al. (2008). ROS3 is an RNA-binding protein required for DNA demethylation in Arabidopsis. Nature, 455(7217), 1259–1262.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Walter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Fachmedien Wiesbaden GmbH

About this chapter

Cite this chapter

Walter, J., Hümpel, A. (2017). Introduction to Epigenetics. In: Heil, R., Seitz, S., König, H., Robienski, J. (eds) Epigenetics. Technikzukünfte, Wissenschaft und Gesellschaft / Futures of Technology, Science and Society. Springer VS, Wiesbaden. https://doi.org/10.1007/978-3-658-14460-9_2

Download citation

Publish with us

Policies and ethics