Skip to main content

Synthetic biology’s multiple dimensions of benefits and risks: implications for governance and policies

  • Chapter
  • First Online:
Synthetic Biology

Abstract

Synthetic biology (SB) does not constitute a strictly defined field, but may be best described as an engineering approach aimed at redesigning or newly constructing biology-derived parts, systems, and entire organisms. This approach can integrate different disciplines (biology, chemistry, physics, mathematics) and ‘converging technologies’ (biotechnology, nanotechnology, information technology); and knowledge derived from systems biology, whole-genome engineering, pathway engineering, mathematical modeling and computer-aided design, as well as the notion of interchangeable ‘biological parts’, are often seen as hallmarks of the SB idea (Lorenzo and Danchin 2008; NBT 2009; Way et al. 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Annaluru, N., Muller, H., Mitchell, L.A., Ramalingam, S., Stracquadanio, G., Richardson, S.M., … Chandrasegaran, S. (2014). Total Synthesis of a Functional Designer Eukaryotic Chromosome. Science, 344, 55–58. doi: 10.1126/science.1249252.

    Article  Google Scholar 

  • Berndes, G., Hoogwijk, M., & Broek, R. (2003). The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass and Bioenergy, 25, 1–28.

    Article  Google Scholar 

  • Blain, J.C., & Szostak, J.W. (2014). Progress Toward Synthetic Cells. Annual Review of Biochemistry, 83, 615–640.

    Article  Google Scholar 

  • Bó, E.D. (2006). Regulatory capture: a review. Oxford Review of Economic Policy, 22, 203–225.

    Article  Google Scholar 

  • Boldt, J., & Müller, O. (2008). Newtons of the leaves of grass. Nature Biotechnology, 26, 387–389.

    Article  Google Scholar 

  • Bond-Watts, B.B., Bellerose, R.J., & Chang, M.C.Y. (2011). Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nature Chemical Biology, 7, 222–227.

    Article  Google Scholar 

  • BTWC (1986). Second Review Conference Final Declaration. Biological and Toxin Weapons Convention. www.opbw.org/rev_cons/2rc/docs/final_dec/2RC_final_dec_E.pdf. Accessed: 26 March 2015.

  • Buhk, H.J. (2014). Synthetic biology and its regulation in the European Union. New Biotechnology, 31, 528–531.

    Article  Google Scholar 

  • Buyx, A., & Tait, J. (2011). Ethics. Ethical framework for biofuels. Science, 332, 540–541.

    Article  Google Scholar 

  • Carter, S.R., Rodemeyer, M., Garfinkel, M.S., & Friedman, R.M. (2014). Synthetic Biology and the US Biotechnology Regulatory System: Challenges and Options. J. Craig Venter Institute. http://www.jcvi.org/cms/fileadmin/site/research/projects/synthetic-biology-and-the-us-regulatory-system/full-report.pdf. Accessed: 26 March 2015.

  • Cho, M.K., Magnus, D., Caplan, A.L., & McGee, D. (1999). Policy forum: genetics. Ethical considerations in synthesizing a minimal genome. Science, 286, 2089–2090.

    Article  Google Scholar 

  • Church, G. (2004). A Synthetic Biohazard Non-proliferation Proposal. http://arep.med.harvard.edu/SBP/Church_Biohazard04c.htm. Accessed: 26 March 2015.

  • CWC (n.d.). Chemical Weapons Convention. Organisation for the Prohibition of Chemical Weapons. https://www.opcw.org/chemical-weapons-convention/. Accessed: 26 March 2015.

  • Da Rin, M., Hellmann, T.F., & Puri, M. (2011). A survey of venture capital research. National Bureau of Economic Research. Working Paper 17523. http://www.nber.org/papers/w17523. Accessed: 26 March 2015.

  • Dolgin, Elie. (2015). GM microbes created that can’t escape the lab. Nature, 517, 423.

    Article  Google Scholar 

  • EC (1990). European Council. Council Directive of 23 April 1990 on the contained use of genetically modified micro-organisms (90/219/EEC), OJ 1990 L 117/1.

    Google Scholar 

  • EC (1998). European Council. Council Directive 98/81/EC of 26 October 1998 amending Directive 90/219/EEC on the contained use of genetically modified micro-organisms, OJ 1998 L 330/13.

    Google Scholar 

  • EC (2001). European Council. Directive 2001/18/EC of the European Parlament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council directive 90/220/EEC, OJ 2001 L 106/1.

    Google Scholar 

  • EC (2009). European Council. Council Regulation (EC) No 428/2009 of 5 May 2009 setting up a Community regime for the control of exports, transfer, brokering and transit of dual-use items, OJ 2009 L 134/1.

    Google Scholar 

  • ECA (2012). Management of conflict of interest in selected EU Agencies. European Court of Auditors. Special report No 15/2012. doi: 10.2865/21104. http://bookshop.europa.eu/en/management-of-conflict-of-interest-in-selected-eu-agencies-pbQJAB12014/. Accessed: 26 March 2015.

  • The Economist (2012). European venture capital. Venturecrats. The Economist, 19 April 2012. http://www.economist.com/blogs/schumpeter/2012/04/european-venture-capital. Accessed: 26 March 2015.

  • ETC (2007). ETC Group. Extreme Genetic Engineering. An Introduction to Synthetic Biology. http://www.etcgroup.org/sites/www.etcgroup.org/files/publication/602/01/synbioreportweb.pdf. Accessed: 26 March 2015.

  • ETC (2010). ETC Group. The New Biomassters. Synthetic Biology and the Next Assault on Biodiversity and Livelihoods. http://www.etcgroup.org/sites/www.etcgroup.org/files/biomassters_27feb2011.pdf. Accessed: 26 March 2015.

  • Fauci, A. S., & Collins, F. S. (2012). Benefits and risks of influenza research: lessons learned. Science, 336, 1522–1523.

    Article  Google Scholar 

  • FoE (2010). Friends of the Earth. Synthetic Solutions to the Climate Crisis: The Dangers of Synthetic Biology for Biofuels Production. http://libcloud.s3.amazonaws.com/93/59/9/529/1/SynBio-Biofuels_Report_Web.pdf. Accessed: 26 March 2015.

  • Frank, D., Heil, R., Coenen, C., & König, H. (2015). Synthetic biology’s self-fulfilling prophecy – dangers of confinement from within and outside. Biotechnology Journal, 10, 231–235.

    Article  Google Scholar 

  • Garfinkel, M.S., Endy, D., Epstein, G.L., & Friedman, R.M. (2007). Synthetic genomics | options for governance. Biosecurity Bioterrorism, 5, 359–362.

    Article  Google Scholar 

  • Gibson, D.G., Glass, J.I., Lartigue, C., Noskov, V.N., Chuang, R.Y., Algire, M.A., … Venter, J.C. (2010). Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329(5987), 52–56. doi: 10.1126/science.1190719.

    Article  Google Scholar 

  • Herfst, S., Schrauwen, E.J., Linster, M., Chutinimitkul, S., Wit, E. d., Munster, V.J., … Fouchier, R.A. (2012). Airborne transmission of influenza A/H5N1 virus between ferrets. Science, 336(6088), 1534–1541.

    Article  Google Scholar 

  • IASB (2009). International Association Synthetic Biology. The IASB Code of Conduct for Best Practices in Gene Synthesis. www.ia-sb.eu/tasks/sites/synthetic-biology/assets/File/pdf/iasb_code_of_conduct_final.pdf. Accessed: 26 March 2015.

  • IGSC (2009). International Gene Synthesis Consortium. Harmonized screening protocol: gene sequence & customer screening to promote biosecurity. http://www.genesynthesisconsortium.org/images/pdf/IGSC%20Harmonized%20Screening%20Protocol–11_18_09.pdf. Accessed: 26 March 2015.

  • Imai, M., Watanabe, T., Hatta, M., Das, S.C., Ozawa, M., Shinya, K., … Kawaoka, Y. (2012). Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature, 486(7403), 420–428.

    Google Scholar 

  • Jefferson, C., Lentzos, F., & Marris, C. (2014). Synthetic biology and biosecurity: challenging the “myths”. Frontiers in Public Health, 2, 115. doi: 10.3389/fpubh.2014.00115.

    Article  Google Scholar 

  • Juma, C., & Bell, B. (2009). V. Advanced Biofuels and Developing Countries: Intellectual Property Scenarios and Policy Implications. In: The Biofuels Market: Current Situation and Alternative Scenarios (pp. 63–89). United Nations report UNCTAD/DITC/BCC/2009/1. New York: United Nations.

    Google Scholar 

  • Kelle, A. (2009). Ensuring the security of synthetic biology-towards a 5P governance strategy. Systems and Synthetic Biology, 3, 85–90.

    Article  Google Scholar 

  • Khalil, A.S., & Collins, J.J. (2010). Synthetic biology: applications come of age. Nature Reviews Genetics, 11, 367–379.

    Article  Google Scholar 

  • König, H., Frank, D., & Heil, R. (2014). Science, technology and the state: implications for governance of synthetic biology and emerging technologies. In: T. Michalek, L. Hebáková, L. Hennen, C. Scherz, L. Nierling & J. Hahn (eds.), Technology Assessment and Policy Areas of Great Transitions. Proceedings from the PACITA 2013 Conference in Prague. Prague: Technology Centre ASCR.

    Google Scholar 

  • König, H., Frank, D., Heil, R., & Coenen, C. (2013). Synthetic Genomics and Synthetic Biology Applications Between Hopes and Concerns. Current Genomics, 14, 11–24.

    Google Scholar 

  • Kumar, S. (2007). Synthetic Biology: The Intellectual Property Puzzle. Texas Law Review, 85, 1745–1768.

    Google Scholar 

  • Leprince, A., Lorenzo, V. d., Voller, P., Passel, M.W. v., & Martins dos Santos, V.A. (2012). Random and cyclical deletion of large DNA segments in the genome of Pseudomonas putida. Environmental Microbiology, 14, 1444–1453.

    Article  Google Scholar 

  • Linster, M., Boheemen, S. v., Graaf, M. d., Schrauwen, E.J., Lexmond, P., Mänz, B., … Herfst, S. (2014). Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Cell, 157(2), 329–339.

    Article  Google Scholar 

  • Liss, M., Daubert, D., Brunner, K., Kliche, K., Hammes, U., Leiherer, A., & Wagner, R. (2012). Embedding permanent watermarks in synthetic genes. PLOS ONE, 7, e42465. doi: 10.1371/journal.pone.0042465.

    Article  Google Scholar 

  • Lloyd’s (2009). Synthetic biology: influencing development. Lloyd’s emerging risks team report. http/www.lloyds.com/~/media/lloyds/reports/emerging%20risk%20reports/syntheticbiology_influencethedebate_july2009_v1.pdf. Accessed: 26 March 2015.

  • Lorenzo, V. d., & Danchin, A. (2008). Synthetic biology: discovering new worlds and new words. EMBO Reports, 9, 822–827.

    Article  Google Scholar 

  • Malakoff, D. (2013). Avian influenza. Critics skeptical as flu scientists argue for controversial H7N9 studies. Science, 341, 601.

    Article  Google Scholar 

  • Mandell, D.J., Lajoie, M.J., Mee, M.T., Takeuchi, R., Kuznetsov, G., Norville, J.E., Gregg, C.J., Stoddard, B.L., & Church, G.M. (2015). Biocontainment of genetically modified organisms by synthetic protein design. Nature, 518, 55–60.

    Article  Google Scholar 

  • Mueller, S., Coleman, J.R., Papamichail, D., Ward, C. B., Nimnual, A., Futcher, B., Skiena S., & Wimmer, E. (2010). Live attenuated influenza virus vaccines by computer-aided rational design. Nature Biotechnology, 28, 723–726.

    Article  Google Scholar 

  • NBT (2009). What’s in a name? Nature Biotechnology, 27, 1071–1073.

    Article  Google Scholar 

  • Nielsen, J., & Keasling, J. D. (2011). Synergies between synthetic biology and metabolic engineering. Nature Biotechnology, 29, 693–695.

    Article  Google Scholar 

  • NRC (2006). National Research Council. Globalization, Biosecurity, and the Future of the Life Sciences. Washington, D.C.: The National Academies Press.

    Google Scholar 

  • OECD (2009). The Bioeconomy to 2030: Designing a Policy Agenda. Paris: OECD Publishing. doi: 10.1787/9789264056886-en.

    Book  Google Scholar 

  • OECD (2011). Future Prospects for Industrial Biotechnology. Paris: OECD Publishing. doi: 10.1787/9789264126633-en.

    Google Scholar 

  • Pargendler, M. (2012). State Ownership and Corporate Governance. Fordham Law Review, 80, 2917–2973.

    Google Scholar 

  • Pauwels, K., Mampuys, R., Golstein, C., Breyer, D., Herman, P., Kaspari, M., Pagès, J.-C., Pfister, H., Wilk, F. v. d., & Schönig, B. (2013). Event report: SynBio Workshop (Paris 2012)–Risk assessment challenges of Synthetic Biology. Journal für Verbraucherschutz und Lebensmittelsicherheit, 8, 215–226.

    Article  Google Scholar 

  • Pósfai, G., Plunkett, G., Fehér, T., Frisch, D., Keil, G.M., Umenhoffer, K., … Blattner, F.R. (2006). Emergent properties of reduced-genome Escherichia coli. Science, 312(5776), 1044–1046.

    Article  Google Scholar 

  • Prindle, A., Samayoa, P., Razinkov, I., Danino, T., Tsimring, L. S., & Hasty, J. (2012). A sensing array of radically coupled genetic ‘biopixels’. Nature, 481, 39–44.

    Article  Google Scholar 

  • Rabinovitch-Deere, C.A., Oliver, J.W., Rodriguez, G.M., & Atsumi, S. (2013). Synthetic biology and metabolic engineering approaches to produce biofuels. Chemical Reviews, 113, 4611–4632.

    Article  Google Scholar 

  • Regalbuto, J.R. (2009). Engineering. Cellulosic biofuels—got gasoline? Science, 325, 822–824.

    Article  Google Scholar 

  • Reppas, N.B., & Ridley, C.P. (2010). Methods and compositions for the recombinant biosynthesis of n-alkanes. U.S. Patent No. 7,794, 969. Washington, D.C.: U.S. Patent and Trademark Office.

    Google Scholar 

  • Robertson, D.E., Jacobson, S.A., Morgan, F., Berry, D., Church, G.M., & Afeyan, N.B. (2011). A new dawn for industrial photosynthesis. Photosynthesis Research, 107, 269–277.

    Article  Google Scholar 

  • Roessler, P.G., Chen, Y., Liu, B., & Dodge, C.N. (2009). Secretion of fatty acids by photosynthetic microorganisms. United States Patent Application 20090298143.

    Google Scholar 

  • Rovner, A.J., Haimovich, A.D., Katz, S.R., Li, Z., Grome, M.W., Gassaway, B.M., … Isaacs, F.J. (2015). Recoded organisms engineered to depend on synthetic amino acids. Nature, 518, 89–93.

    Article  Google Scholar 

  • Ruder, W.C., Lu, T., & Collins, J.J. (2011). Synthetic biology moving into the clinic. Science, 333, 1248–1252.

    Article  Google Scholar 

  • Rutz, B. (2009). Synthetic biology and patents. A European perspective. EMBO Reports, 10(1S), 14–17.

    Article  Google Scholar 

  • SCHER (2014). Scientific Committee on Health and Environmental Risks (SCHER), Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR), Scientific Committee on Consumer Safety (SCCS). Preliminary Opinion on Synthetic Biology II: Risk assessment methodologies and safety aspects. European Union. doi: 10.2772/63529.

    Google Scholar 

  • Shapiro, S. (2012). The Complexity of Regulatory Capture: Diagnosis, Causality and Remediation. Roger Williams University Law Review, 102, 101–137.

    Google Scholar 

  • Stano, P., & Luisi, P.L. (2013). Semi-synthetic minimal cells: origin and recent developments. Current Opinion in Biotechnology, 24, 633–638.

    Article  Google Scholar 

  • Suk, J.E., Zmorzynska, A., Hunger, I., Biederbick, W., Sasse, J., Maidhof, H., & Semenza, J. C. (2011). Dual-use research and technological diffusion: reconsidering the bioterrorism threat spectrum. PLoS Pathogens, 7, e1001253. doi: 10.1371/journal.ppat.1001253.

    Article  Google Scholar 

  • Sukhdev, P. (2012) Sustainability: The corporate climate overhaul. Nature, 486, 27–28.

    Article  Google Scholar 

  • Tucker, J.B. (2010). Seeking Biosecurity Without Verification: The New U.S. Strategy on Biothreats. Arms Control Today (January/February 2010), 8–14.

    Google Scholar 

  • Tucker, J.B. (2011). Could Terrorists Exploit Synthetic Biology? The New Atlantis, 69–81.

    Google Scholar 

  • UNICRI (2012). United Nations Interregional Crime and Justice Research Institute. Security Implications of Synthetic Biology and Nanobiotechnology. A Risk and Response Assessment of Advances in Biotechnology. Turin: UNICRI. http://www.unicri.it/in_focus/files/UNICRI%202012%20Security%20Implications%20of%20Synthetic%20Biology%20and%20Nanobiotechnology%20Final%20Public–1.pdf. Accessed: 26 March 2015.

  • USGov (2014). United States Government Policy for Institutional Oversight of Life Sciences Dual Use Research of Concern. http://www.phe.gov/s3/dualuse/Documents/durc-policy.pdf. Accessed: 26 March 2015.

  • Vasconcelos, V.V., Santos, F.C., & Pacheco, J.M. (2013) A bottom-up institutional approach to cooperative governance of risky commons. Nature Climate Change, 3, 797–801.

    Article  Google Scholar 

  • Watanabe, T., Zhong, G., Russell, C.A., Nakajima, N., Hatta, M., Hanson, A., … Kawaoka, Y. (2014). Circulating avian influenza viruses closely related to the 1918 virus have pandemic potential. Cell host & microbe, 15(6), 692–705.

    Article  Google Scholar 

  • Way, J.C., Collins, J.J., Keasling, J.D., & Silver, P.A. (2014). Integrating biological redesign: where synthetic biology came from and where it needs to go. Cell, 157, 151–161.

    Article  Google Scholar 

  • Weber, W., & Fussenegger, M. (2012). Emerging biomedical applications of synthetic biology Nature Reviews Genetics, 13, 21–35.

    Google Scholar 

  • Wimmer, E., Mueller, S., Tumpey, T.M., & Taubenberger, J.K. (2009). Synthetic viruses: a new opportunity to understand and prevent viral disease. Nature Biotechnology, 27, 1163–1172.

    Article  Google Scholar 

  • Wooldridge, A. (2012). State capitalism. Special report. The Economist, 21 January 2012.

    Google Scholar 

  • Wright, O., Stan, G.B., & Ellis, T. (2013). Building-in biosafety for synthetic biology. Microbiology, 159, 1221–1235.

    Article  Google Scholar 

  • Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R., & Benenson, Y. (2011). Multi-input RNAibased logic circuit for identification of specific cancer cells. Science, 333, 1307–1311.

    Article  Google Scholar 

  • Yim, H., Haselbeck, R., Niu, W., Pujol-Baxley, C., Burgard, A., Boldt, J., … Dien, S. v. (2011). Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nature chemical biology, 7(7), 445–452.

    Article  Google Scholar 

  • Zhang, F., Carothers, J.M., & Keasling, J.D. (2012). Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nature Biotechnology, 30, 354–359.

    Article  Google Scholar 

  • Zimmeren, E. v., Vanneste, S., Matthijs, G., Vanhaverbeke, W., & Overwalle, G. v. (2011). Patent pools and clearinghouses in the life sciences. Trends in Biotechnology, 29, 569–576.

    Article  Google Scholar 

  • ZKBS (2012). Zentrale Kommision für die Biologische Sicherheit (Central Commission for Biological Safety and Security). Monitoring der Synthetischen Biologie in Deutschland. 1. Zwischenbericht der Zentralen Kommission für die Biologische Sicherheit vom 6. November 2012. http://www.bvl.bund.de/SharedDocs/Downloads/06_Gentechnik/ZKBS/01_Allgemeine_Stellungnahmen_deutsch/01_allgemeine_Themen/Synthetische_Biologie.pdf?__blob=publicationFile&v=3. Accessed: 26 March 2015.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

König, H., Frank, D., Heil, R., Coenen, C. (2016). Synthetic biology’s multiple dimensions of benefits and risks: implications for governance and policies. In: Boldt, J. (eds) Synthetic Biology. Technikzukünfte, Wissenschaft und Gesellschaft / Futures of Technology, Science and Society. Springer VS, Wiesbaden. https://doi.org/10.1007/978-3-658-10988-2_14

Download citation

Publish with us

Policies and ethics